HDFS是一个主/从(Mater/Slave)体系结构,从最终用户的角度来看,它就像传统的 文件系统一样,可以通过目录路径对文件执行CRUD(Create、Read、Update和Delete) 操作。但由于分布式存储的性质,HDFS集群拥有一个NameNode和一些DataNode。
NameNode管理文件系统的元数据,DataNode存储实际的数据。客户端通过同
NameNode和DataNodes的交互访问文件系统。客户端联系NameNode以获取文件的元数 据,而真正的文件I/O操作是直接和DataNode进行交互的。
这种架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分。
Client:就是客户端。
1、文件切分。文件上传 HDFS 的时候,Client 将文件切分成 一个一个的Block,然后进行存储。
2、与 NameNode 交互,获取文件的位置信息。
3、与 DataNode 交互,读取或者写入数据。
4、Client 提供一些命令来管理 HDFS,比如启动或者关闭HDFS。
5、Client 可以通过一些命令来访问 HDFS。
NameNode:就是 master,它是一个主管、管理者。
1、管理 HDFS 的名称空间。
2、管理数据块(Block)映射信息
3、配置副本策略
4、处理客户端读写请求。
DataNode:就是Slave。NameNode 下达命令,DataNode 执行实际的操作。
1、存储实际的数据块。
2、执行数据块的读/写操作。
Secondary NameNode:并非 NameNode 的热备。当NameNode 挂掉的时候,它并不能马上替换 NameNode 并提供服务。
1、辅助 NameNode,分担其工作量。
2、定期合并 fsimage和fsedits,并推送给NameNode。
3、在紧急情况下,可辅助恢复 NameNode。
为什么选择 HDFS 存储数据
1、之所以选择 HDFS 存储数据,是因为 HDFS 具有以下优点:
(1) 高容错性
1) 数据自动保存多个副本。它通过增加副本的形式,提高容错性。
2) 某一个副本丢失以后,它可以自动恢复,这是由 HDFS 内部机制实现的,我们不必关
心。
(2) 适合批处理
1) 它是通过移动计算而不是移动数据。
2) 它会把数据位置暴露给计算框架。
(3) 适合大数据处理
1) 数据规模:能够处理数据规模达到 GB、TB、甚至PB级别的数据。
2) 文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3) 节点规模:能够处理10K节点的规模。
(4) 流式数据访问
1) 一次写入,多次读取,不能修改,只能追加。
2) 它能保证数据的一致性。
(5) 可构建在廉价机器上
1) 它通过多副本机制,提高可靠性。
2) 它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。
2、当然 HDFS 也有它的劣势,并不适合所有的场合:
(1) 不适合低延时数据访问
1) 比如毫秒级的来存储数据,这是不行的,它做不到。
2) 它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况 下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。
改进策略
(2) 无法高效的对大量小文件进行存储
1) 存储大量小文件的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的。
2) 小文件存储的寻道时间会超过读取时间,它违反了HDFS的设计目标。 改进策略
(3) 并发写入、文件随机修改
1) 一个文件只能有一个写,不允许多个线程同时写。
2) 仅支持数据 append(追加),不支持文件的随机修改。