TensorFlow实战——验证码识别

本次验证码识别项目是基于TensorFlow和captcha库,通过卷积神经网络训练来实现的一个简单的验证码识别。由于本人设备条件有限,本次实验只针对数字验证码进行识别,有条件的同学可以对代码进行简单修改加入大小写英文字母的识别。


文章目录

  • 验证码生成
    • 安装captcha库
    • 生成验证码
  • 验证码识别
    • 构造输入数据和标签
    • 构造卷积网络
    • 模型训练和测试`
  • 全部代码
  • 项目链接


验证码生成

安装captcha库

首先打开Anaconda Prompt进入到自己配置的TensorFlow环境中,然后输入pip install captcha回车即可安装capthca库,由于本人已经安装过所以显示会不一样。
TensorFlow实战——验证码识别_第1张图片


生成验证码

安装好后captcha库后先测试一下生成验证码

首先导入所需的库和生成验证码的数据集,然后定义构造验证码和生成验证码的函数;生成的验证码是在number、alphabet、ALPHABET中随机抽选出来的。

import tensorflow as tf
from captcha.image import ImageCaptcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random

number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
 ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']

# 数字+大小写英文字母
# def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):
def random_captcha_text(char_set=number, captcha_size=4):
    # 构造captcha_text(lsit类型) 然后循环4次从char_set中选4个元素放进captcha_text
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text


def gen_captcha_text_and_image():
    # 定义captcha库中的ImageCaptcha()类
    image = ImageCaptcha()
    # 调用random_captcha_text函数,生成长度为4的验证码
    captcha_text = random_captcha_text()
    # 将lsit转换成字符串
    captcha_text = ''.join(captcha_text)
    # 生成验证码图像
    captcha = image.generate(captcha_text)
    # 将验证码图像保存为np.array格式(TensorFlow网络可接受的格式)
    captcha_image = Image.open(captcha)
    captcha_image = np.array(captcha_image)
    return captcha_text, captcha_image


if __name__ == '__main__':
    text, image = gen_captcha_text_and_image()
    f = plt.figure()
    ax = f.add_subplot(111)
    ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
    plt.imshow(image)
    plt.show()

代码运行结果:
TensorFlow实战——验证码识别_第2张图片

TensorFlow实战——验证码识别_第3张图片


验证码识别

构造输入数据和标签

# 将彩色图像转化为灰色图像
def convert2gray(img):
    if len(img.shape) > 2:
        gray = np.mean(img, -1)
        return gray
    else:
        return img

# 文本转向量
def text2vec(text):
    text_len = len(text)
    if text_len > MAX_CAPTCHA:
        raise ValueError('验证码最长4个字符')

    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

    for i, c in enumerate(text):
        idx = i * CHAR_SET_LEN + int(c)
        vector[idx] = 1
    return vector

# 生成一个训练batch
def get_next_batch(batch_size=128):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    # 有时生成图像大小不是(60, 160, 3)
    def wrap_gen_captcha_text_and_image():
        while True:
            text, image = gen_captcha_text_and_image()
            if image.shape == (60, 160, 3):
                return text, image

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image()
        image = convert2gray(image)

        batch_x[i, :] = image.flatten() / 255  # 让值在0~1之间
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y


构造卷积网络

def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    # 卷积层1
    w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
    b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv1 = tf.nn.dropout(conv1, keep_prob)

    # 卷积层2
    w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv2 = tf.nn.dropout(conv2, keep_prob)

    # 卷积层3
    w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # 全连接层
    w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
    b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)

    w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
    out = tf.add(tf.matmul(dense, w_out), b_out)
    return out

模型训练和测试`

def train_crack_captcha_cnn():
    output = crack_captcha_cnn()
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output))
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
    max_idx_p = tf.argmax(predict, 2)
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    correct_pred = tf.equal(max_idx_p, max_idx_l)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        step = 0
        while True:
            batch_x, batch_y = get_next_batch(64)
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})

            # 每100 step计算一次准确率
            if step % 100 == 0:
                batch_x_test, batch_y_test = get_next_batch(100)
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
                print("step %d, training accuracy %g" % (step, acc))

                # 如果准确率大于80%,保存模型,完成训练
                if acc > 0.80:
                    saver.save(sess, "./model/crack_capcha.model", global_step=step)
                    break

            step += 1


def crack_captcha(captcha_image):
    output = crack_captcha_cnn()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, "./model/crack_capcha.model-2900")
        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
        text = text_list[0].tolist()
        return text


if __name__ == '__main__':
   # train = 0时训练模型, train = 1时测试模型。
   # 训练模块
    train = 0
    if train == 0:
        number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
        # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
        # ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']

        text, image = gen_captcha_text_and_image()
        print("验证码图像channel:", image.shape)  # (60, 160, 3)
        # 图像大小
        IMAGE_HEIGHT = 60
        IMAGE_WIDTH = 160
        MAX_CAPTCHA = len(text)  # 验证码长度为4
        print("验证码文本最长字符数", MAX_CAPTCHA)

        char_set = number
        CHAR_SET_LEN = len(char_set)  # 数字集长度为10

        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])  # 60*160
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])  # 4*10
        keep_prob = tf.placeholder(tf.float32)  # dropout

        train_crack_captcha_cnn()
         
   # 测试模块
    if train == 1:
        number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
        IMAGE_HEIGHT = 60
        IMAGE_WIDTH = 160
        char_set = number
        CHAR_SET_LEN = len(char_set)

        text, image = gen_captcha_text_and_image()

        f = plt.figure()
        ax = f.add_subplot(111)
        ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
        plt.imshow(image)

        plt.show()

        MAX_CAPTCHA = len(text)
        image = convert2gray(image)
        image = image.flatten() / 255

        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
        keep_prob = tf.placeholder(tf.float32)  # dropout

        predict_text = crack_captcha(image)
        print("正确: {}  预测: {}".format(text, predict_text))

由于设备条件有限,准确率设置为80%时保存模型,CPU环境下大概一个小时完成训练。

训练结果:
TensorFlow实战——验证码识别_第4张图片

测试结果:
由下图可以看出,80%准确率的模型大部分的数字还是可以识别出来的,但还是会出现个别数字识别错误。
TensorFlow实战——验证码识别_第5张图片
TensorFlow实战——验证码识别_第6张图片
TensorFlow实战——验证码识别_第7张图片
TensorFlow实战——验证码识别_第8张图片

全部代码

Captcha Generate.py

import tensorflow as tf
from captcha.image import ImageCaptcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random

number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']


def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):
    # 构造captcha_text lsit 然后循环4次从char_set中选4个元素放进captcha_text
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text


def gen_captcha_text_and_image():
    # 定义captcha库中的ImageCaptcha()类
    image = ImageCaptcha()
    # 将lsit转换成字符串
    captcha_text = random_captcha_text()
    captcha_text = ''.join(captcha_text)
    # 生成图像验证码
    captcha = image.generate(captcha_text)
    # 将验证码图保存为np.array格式
    captcha_image = Image.open(captcha)
    captcha_image = np.array(captcha_image)
    return captcha_text, captcha_image


if __name__ == '__main__':
    text, image = gen_captcha_text_and_image()
    f = plt.figure()
    ax = f.add_subplot(111)
    ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
    plt.imshow(image)
    plt.show()


Captcha Recognition.py

import numpy as np
import tensorflow as tf
from captcha.image import ImageCaptcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random

number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
# ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']


def random_captcha_text(char_set=number, captcha_size=4):
    # 构造captcha_text(lsit类型) 然后循环4次从char_set中选4个元素放进captcha_text
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text


def gen_captcha_text_and_image():
    # 定义captcha库中的ImageCaptcha()类
    image = ImageCaptcha()
    # 调用random_captcha_text函数,生成长度为4的验证码
    captcha_text = random_captcha_text()
    # 将lsit转换成字符串
    captcha_text = ''.join(captcha_text)
    # 生成验证码图像
    captcha = image.generate(captcha_text)
    # 将验证码图像保存为np.array格式(TensorFlow网络可接受的格式)
    captcha_image = Image.open(captcha)
    captcha_image = np.array(captcha_image)
    return captcha_text, captcha_image


# 将彩色图像转化为灰色图像
def convert2gray(img):
    if len(img.shape) > 2:
        gray = np.mean(img, -1)
        return gray
    else:
        return img


# 文本转向量
def text2vec(text):
    text_len = len(text)
    if text_len > MAX_CAPTCHA:
        raise ValueError('验证码最长4个字符')

    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

    for i, c in enumerate(text):
        idx = i * CHAR_SET_LEN + int(c)
        vector[idx] = 1
    return vector

# 生成一个训练batch
def get_next_batch(batch_size=128):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    # 有时生成图像大小不是(60, 160, 3)
    def wrap_gen_captcha_text_and_image():
        while True:
            text, image = gen_captcha_text_and_image()
            if image.shape == (60, 160, 3):
                return text, image

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image()
        image = convert2gray(image)

        batch_x[i, :] = image.flatten() / 255  # 让值在0~1之间
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y


# 定义卷积神经网络
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    # 卷积层1
    w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
    b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv1 = tf.nn.dropout(conv1, keep_prob)

    # 卷积层2
    w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv2 = tf.nn.dropout(conv2, keep_prob)

    # 卷积层3
    w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # 全连接层
    w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
    b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)

    w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
    out = tf.add(tf.matmul(dense, w_out), b_out)
    return out


# 训练
def train_crack_captcha_cnn():
    output = crack_captcha_cnn()
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output))
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
    max_idx_p = tf.argmax(predict, 2)
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    correct_pred = tf.equal(max_idx_p, max_idx_l)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        step = 0
        while True:
            batch_x, batch_y = get_next_batch(64)
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})

            # 每100 step计算一次准确率
            if step % 100 == 0:
                batch_x_test, batch_y_test = get_next_batch(100)
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
                print("step %d, training accuracy %g" % (step, acc))

                # 如果准确率大于80%,保存模型,完成训练
                if acc > 0.80:
                    saver.save(sess, "./model/crack_capcha.model", global_step=step)
                    break

            step += 1


def crack_captcha(captcha_image):
    output = crack_captcha_cnn()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, "./model/crack_capcha.model-2900")
        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
        text = text_list[0].tolist()
        return text


if __name__ == '__main__':
    train = 1
    if train == 0:
        number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
        # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
        # ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']

        text, image = gen_captcha_text_and_image()
        print("验证码图像channel:", image.shape)  # (60, 160, 3)
        # 图像大小
        IMAGE_HEIGHT = 60
        IMAGE_WIDTH = 160
        MAX_CAPTCHA = len(text)  # 验证码长度为4
        print("验证码文本最长字符数", MAX_CAPTCHA)

        char_set = number
        CHAR_SET_LEN = len(char_set)  # 数字集长度为10

        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])  # 60*160
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])  # 4*10
        keep_prob = tf.placeholder(tf.float32)  # dropout

        train_crack_captcha_cnn()

    if train == 1:
        number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
        IMAGE_HEIGHT = 60
        IMAGE_WIDTH = 160
        char_set = number
        CHAR_SET_LEN = len(char_set)

        text, image = gen_captcha_text_and_image()

        f = plt.figure()
        ax = f.add_subplot(111)
        ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
        plt.imshow(image)

        plt.show()

        MAX_CAPTCHA = len(text)
        image = convert2gray(image)
        image = image.flatten() / 255

        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
        keep_prob = tf.placeholder(tf.float32)  # dropout

        predict_text = crack_captcha(image)
        print("正确: {}  预测: {}".format(text, predict_text))





项目链接

GitHub地址:https://github.com/WellTung666/Captcha-Recognition

你可能感兴趣的:(TensorFlow,深度学习,验证码识别,Tensorflow)