对于连续性变量,直接分箱。
定义一些分箱用到的辅助函数:
#当连续变量的初始取值集合太多时(>100),我们先对其进行初步划分
def SplitData(df, col, numOfSplit, special_attribute=[]):
'''
:param df: 按照col排序后的数据集
:param col: 待分箱的变量
:param numOfSplit: 切分的组别数
:param special_attribute: 在切分数据集的时候,某些特殊值需要排除在外
:return: 在原数据集上增加一列,把原始细粒度的col重新划分成粗粒度的值,便于分箱中的合并处理
'''
df2 = df.copy()
if special_attribute != []:
df2 = df.loc[~df[col].isin(special_attribute)]
N = df2.shape[0]
n = N//numOfSplit #每组样本数
splitPointIndex = [i*n for i in range(1,numOfSplit)] #分割点的下标
rawValues = sorted(list(df2[col])) #对取值进行排序
splitPoint = [rawValues[i] for i in splitPointIndex] #分割点的取值
splitPoint = sorted(list(set(splitPoint)))
return splitPoint
#根据分割点将x映射至相应的组中
def AssignGroup(x, bin):
'''
:param x: 某个变量的某个取值
:param bin: 上述变量的分箱结果
:return: x在分箱结果下的映射
'''
N = len(bin)
if x<=min(bin):
return min(bin)
elif x>max(bin):
return 10e10
else:
for i in range(N-1):
if bin[i] < x <= bin[i+1]:
return bin[i+1]
def AssignBin(x, cutOffPoints,special_attribute=[]):
'''
:param x: 某个变量的某个取值
:param cutOffPoints: 上述变量的分箱结果,用切分点表示
:param special_attribute: 不参与分箱的特殊取值
:return: 分箱后的对应的第几个箱,从0开始
for example, if cutOffPoints = [10,20,30], if x = 7, return Bin 0. If x = 35, return Bin 3
'''
numBin = len(cutOffPoints) + 1 + len(special_attribute)
if x in special_attribute:
i = special_attribute.index(x)+1
return 'Bin {}'.format(0-i)
if x<=cutOffPoints[0]:
return 'Bin 0'
elif x > cutOffPoints[-1]:
return 'Bin {}'.format(numBin-1)
else:
for i in range(0,numBin-1):
if cutOffPoints[i] < x <= cutOffPoints[i+1]:
return 'Bin {}'.format(i+1)
## 判断某变量的坏样本率是否单调,如果不单调,需缩减分箱个数
def BadRateMonotone(df, sortByVar, target,special_attribute = []):
'''
:param df: 包含检验坏样本率的变量,和目标变量
:param sortByVar: 需要检验坏样本率的变量
:param target: 目标变量,0、1表示好、坏
:param special_attribute: 不参与检验的特殊值
:return: 坏样本率单调与否
'''
df2 = df.loc[~df[sortByVar].isin(special_attribute)]
if len(set(df2[sortByVar])) <= 2:
return True
regroup = BinBadRate(df2, sortByVar, target)[1]
combined = zip(regroup['total'],regroup['bad'])
badRate = [x[1]*1.0/x[0] for x in combined]
badRateNotMonotone = [badRate[i]1] and badRate[i] < badRate[i-1] or badRate[i]>badRate[i+1] and badRate[i] > badRate[i-1]
for i in range(1,len(badRate)-1)]
if True in badRateNotMonotone:
return False
else:
return True
计算卡方统计量:
def Chi2(df, total_col, bad_col, overallRate):
'''
:param df: 包含全部样本总计与坏样本总计的数据框
:param total_col: 全部样本的个数
:param bad_col: 坏样本的个数
:param overallRate: 全体样本的坏样本占比
:return: 卡方值
'''
df2 = df.copy()
# 期望坏样本个数=全部样本个数*平均坏样本占比
df2['good']=df2['total']-df2['bad']
df2['expected_bad'] = df[total_col].apply(lambda x: x*overallRate)
df2['expected_good']=df[total_col].apply(lambda x:x*(1-overallRate))
combined_bad = zip(df2['expected_bad'], df2[bad_col])
combined_good=zip(df2['expected_good'],df2['good'])
chi_bad = [(i[0]-i[1])**2/i[0] for i in combined_bad]
chi_good=[(i[0]-i[1])**2/i[0] for i in combined_good]
df=(df2.shape[0]-1)*(2-1) #自由度
chi2 = (sum(chi_bad)+sum(chi_good))/df
return chi2
卡方分箱:
### ChiMerge_MaxInterval: split the continuous variable using Chi-square value by specifying the max number of intervals
def ChiMerge(df, col, target, max_interval=5,special_attribute=[],minBinPcnt=0):
'''
:param df: 包含目标变量与分箱属性的数据框
:param col: 需要分箱的属性
:param target: 目标变量,取值0或1
:param max_interval: 最大分箱数。如果原始属性的取值个数低于该参数,不执行这段函数
:param special_attribute: 不参与分箱的属性取值
:param minBinPcnt:最小箱的占比,默认为0
:return: 分箱结果
'''
colLevels = sorted(list(set(df[col])))
N_distinct = len(colLevels)#不同的取值个数
if N_distinct <= max_interval: #如果原始属性的取值个数低于max_interval,不执行这段函数
print ("The number of original levels for {} is less than or equal to max intervals".format(col))
return colLevels[:-1]
else:
if len(special_attribute)>=1:
df1 = df.loc[df[col].isin(special_attribute)]
df2 = df.loc[~df[col].isin(special_attribute)]
else:
df2 = df.copy()
N_distinct = len(list(set(df2[col])))#该特征不同的取值
# 步骤一: 通过col对数据集进行分组,求出每组的总样本数与坏样本数
if N_distinct > 100:
split_x = SplitData(df2, col, 100)
df2['temp'] = df2[col].map(lambda x: AssignGroup(x, split_x))
else:
df2['temp'] = df2[col]
# 总体bad rate将被用来计算expected bad count
(binBadRate, regroup, overallRate) = BinBadRate(df2, 'temp', target, grantRateIndicator=1)
# 首先,每个单独的属性值将被分为单独的一组
# 对属性值进行排序,然后两两组别进行合并
colLevels = sorted(list(set(df2['temp'])))
groupIntervals = [[i] for i in colLevels]
# 步骤二:建立循环,不断合并最优的相邻两个组别,直到:
# 1,最终分裂出来的分箱数<=预设的最大分箱数
# 2,每箱的占比不低于预设值(可选)
# 3,每箱同时包含好坏样本
# 如果有特殊属性,那么最终分裂出来的分箱数=预设的最大分箱数-特殊属性的个数
split_intervals = max_interval - len(special_attribute)
while (len(groupIntervals) > split_intervals): # 终止条件: 当前分箱数=预设的分箱数
# 每次循环时, 计算合并相邻组别后的卡方值。具有最小卡方值的合并方案,是最优方案
chisqList = []
for k in range(len(groupIntervals)-1):
temp_group = groupIntervals[k] + groupIntervals[k+1]
df2b = regroup.loc[regroup['temp'].isin(temp_group)]
chisq = Chi2(df2b, 'total', 'bad', overallRate)
chisqList.append(chisq)
best_comnbined = chisqList.index(min(chisqList))
groupIntervals[best_comnbined] = groupIntervals[best_comnbined] + groupIntervals[best_comnbined+1]
# after combining two intervals, we need to remove one of them
groupIntervals.remove(groupIntervals[best_comnbined+1])
groupIntervals = [sorted(i) for i in groupIntervals]
cutOffPoints = [max(i) for i in groupIntervals[:-1]]
# 检查是否有箱没有好或者坏样本。如果有,需要跟相邻的箱进行合并,直到每箱同时包含好坏样本
groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))
df2['temp_Bin'] = groupedvalues
(binBadRate,regroup) = BinBadRate(df2, 'temp_Bin', target)
[minBadRate, maxBadRate] = [min(binBadRate.values()),max(binBadRate.values())]
while minBadRate ==0 or maxBadRate == 1:
# 找出全部为好/坏样本的箱
indexForBad01 = regroup[regroup['bad_rate'].isin([0,1])].temp_Bin.tolist()
bin=indexForBad01[0]
# 如果是最后一箱,则需要和上一个箱进行合并,也就意味着分裂点cutOffPoints中的最后一个需要移除
if bin == max(regroup.temp_Bin):
cutOffPoints = cutOffPoints[:-1]
# 如果是第一箱,则需要和下一个箱进行合并,也就意味着分裂点cutOffPoints中的第一个需要移除
elif bin == min(regroup.temp_Bin):
cutOffPoints = cutOffPoints[1:]
# 如果是中间的某一箱,则需要和前后中的一个箱进行合并,依据是较小的卡方值
else:
# 和前一箱进行合并,并且计算卡方值
currentIndex = list(regroup.temp_Bin).index(bin)
prevIndex = list(regroup.temp_Bin)[currentIndex - 1]
df3 = df2.loc[df2['temp_Bin'].isin([prevIndex, bin])]
(binBadRate, df2b) = BinBadRate(df3, 'temp_Bin', target)
chisq1 = Chi2(df2b, 'total', 'bad', overallRate)
# 和后一箱进行合并,并且计算卡方值
laterIndex = list(regroup.temp_Bin)[currentIndex + 1]
df3b = df2.loc[df2['temp_Bin'].isin([laterIndex, bin])]
(binBadRate, df2b) = BinBadRate(df3b, 'temp_Bin', target)
chisq2 = Chi2(df2b, 'total', 'bad', overallRate)
if chisq1 < chisq2:
cutOffPoints.remove(cutOffPoints[currentIndex - 1])
else:
cutOffPoints.remove(cutOffPoints[currentIndex])
# 完成合并之后,需要再次计算新的分箱准则下,每箱是否同时包含好坏样本
groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))
df2['temp_Bin'] = groupedvalues
(binBadRate, regroup) = BinBadRate(df2, 'temp_Bin', target)
[minBadRate, maxBadRate] = [min(binBadRate.values()), max(binBadRate.values())]
# 需要检查分箱后的最小占比
if minBinPcnt > 0:
groupedvalues = df2['temp'].apply(lambda x: AssignBin(x, cutOffPoints))
df2['temp_Bin'] = groupedvalues
valueCounts = groupedvalues.value_counts().to_frame()
valueCounts['pcnt'] = valueCounts['temp'].apply(lambda x: x * 1.0 / N)
valueCounts = valueCounts.sort_index()
minPcnt = min(valueCounts['pcnt'])
while minPcnt < minBinPcnt and len(cutOffPoints) > 2:
# 找出占比最小的箱
indexForMinPcnt = valueCounts[valueCounts['pcnt'] == minPcnt].index.tolist()[0]
# 如果占比最小的箱是最后一箱,则需要和上一个箱进行合并,也就意味着分裂点cutOffPoints中的最后一个需要移除
if indexForMinPcnt == max(valueCounts.index):
cutOffPoints = cutOffPoints[:-1]
# 如果占比最小的箱是第一箱,则需要和下一个箱进行合并,也就意味着分裂点cutOffPoints中的第一个需要移除
elif indexForMinPcnt == min(valueCounts.index):
cutOffPoints = cutOffPoints[1:]
# 如果占比最小的箱是中间的某一箱,则需要和前后中的一个箱进行合并,依据是较小的卡方值
else:
# 和前一箱进行合并,并且计算卡方值
currentIndex = list(valueCounts.index).index(indexForMinPcnt)
prevIndex = list(valueCounts.index)[currentIndex - 1]
df3 = df2.loc[df2['temp_Bin'].isin([prevIndex, indexForMinPcnt])]
(binBadRate, df2b) = BinBadRate(df3, 'temp_Bin', target)
chisq1 = Chi2(df2b, 'total', 'bad', overallRate)
# 和后一箱进行合并,并且计算卡方值
laterIndex = list(valueCounts.index)[currentIndex + 1]
df3b = df2.loc[df2['temp_Bin'].isin([laterIndex, indexForMinPcnt])]
(binBadRate, df2b) = BinBadRate(df3b, 'temp_Bin', target)
chisq2 = Chi2(df2b, 'total', 'bad', overallRate)
if chisq1 < chisq2:
cutOffPoints.remove(cutOffPoints[currentIndex - 1])
else:
cutOffPoints.remove(cutOffPoints[currentIndex])
cutOffPoints = special_attribute + cutOffPoints
return cutOffPoints
# (iii)对连续型变量进行分箱,包括(ii)中的变量
continous_merged_dict = {}
for col in num_features:
print ("{} is in processing".format(col))
if -1 not in set(trainData[col]): #-1会当成特殊值处理。如果没有-1,则所有取值都参与分箱
max_interval = 5 #分箱后的最多的箱数
cutOff = ChiMerge(trainData, col, 'y', max_interval=max_interval,special_attribute=[],minBinPcnt=0)
trainData[col+'_Bin'] = trainData[col].map(lambda x: AssignBin(x, cutOff,special_attribute=[]))
monotone = BadRateMonotone(trainData, col+'_Bin', 'y') # 检验分箱后的单调性是否满足
while(not monotone):
# 检验分箱后的单调性是否满足。如果不满足,则缩减分箱的个数。
max_interval -= 1
cutOff = ChiMerge(trainData, col, 'y', max_interval=max_interval, special_attribute=[],
minBinPcnt=0)
trainData[col + '_Bin'] = trainData[col].map(lambda x: AssignBin(x, cutOff, special_attribute=[]))
if max_interval == 2:
# 当分箱数为2时,必然单调
break
monotone = BadRateMonotone(trainData, col + '_Bin', 'y')
newVar = col + '_Bin'
trainData[newVar] = trainData[col].map(lambda x: AssignBin(x, cutOff, special_attribute=[]))
var_bin_list.append(newVar)
else:
max_interval = 5
# 如果有-1,则除去-1后,其他取值参与分箱
cutOff = ChiMerge(trainData, col, 'y', max_interval=max_interval, special_attribute=[-1],
minBinPcnt=0)
trainData[col + '_Bin'] = trainData[col].map(lambda x: AssignBin(x, cutOff, special_attribute=[-1]))
monotone = BadRateMonotone(trainData, col + '_Bin', 'y',['Bin -1'])
while (not monotone):
max_interval -= 1
# 如果有-1,-1的bad rate不参与单调性检验
cutOff = ChiMerge(trainData, col, 'y', max_interval=max_interval, special_attribute=[-1],
minBinPcnt=0)
trainData[col + '_Bin'] = trainData[col].map(lambda x: AssignBin(x, cutOff, special_attribute=[-1]))
if max_interval == 3:
# 当分箱数为3-1=2时,必然单调
break
monotone = BadRateMonotone(trainData, col + '_Bin', 'y',['Bin -1'])
newVar = col + '_Bin'
trainData[newVar] = trainData[col].map(lambda x: AssignBin(x, cutOff, special_attribute=[-1]))
var_bin_list.append(newVar)
continous_merged_dict[col] = cutOff
'''
第四步:WOE编码、计算IV
'''
WOE_dict = {}
IV_dict = {}
# 分箱后的变量进行编码,包括:
# 1,初始取值个数小于5,且不需要合并的类别型变量。存放在less_value_features中
# 2,初始取值个数小于5,需要合并的类别型变量。合并后新的变量存放在var_bin_list中
# 3,初始取值个数超过5,需要合并的类别型变量。合并后新的变量存放在var_bin_list中
# 4,连续变量。分箱后新的变量存放在var_bin_list中
all_var = var_bin_list + less_value_features
for var in all_var:
woe_iv = CalcWOE(trainData, var, 'y')
WOE_dict[var] = woe_iv['WOE']
IV_dict[var] = woe_iv['IV']
#将变量IV值进行降序排列,方便后续挑选变量
IV_dict_sorted = sorted(IV_dict.items(), key=lambda x: x[1], reverse=True)
IV_values = [i[1] for i in IV_dict_sorted]
IV_name = [i[0] for i in IV_dict_sorted]
plt.title('feature IV')
plt.bar(range(len(IV_values)),IV_values)
'''
第五步:单变量分析和多变量分析,均基于WOE编码后的值。
(1)选择IV高于0.01的变量
(2)比较两两线性相关性。如果相关系数的绝对值高于阈值,剔除IV较低的一个
'''
#选取IV>0.01的变量
high_IV = {k:v for k, v in IV_dict.items() if v >= 0.01}
high_IV_sorted = sorted(high_IV.items(),key=lambda x:x[1],reverse=True)
short_list = high_IV.keys()
short_list_2 = []
for var in short_list:
newVar = var + '_WOE'
trainData[newVar] = trainData[var].map(WOE_dict[var])
short_list_2.append(newVar)
#对于上一步的结果,计算相关系数矩阵,并画出热力图进行数据可视化
trainDataWOE = trainData[short_list_2]
f, ax = plt.subplots(figsize=(10, 8))
corr = trainDataWOE.corr()
sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True),square=True, ax=ax)
#两两间的线性相关性检验
#1,将候选变量按照IV进行降序排列
#2,计算第i和第i+1的变量的线性相关系数
#3,对于系数超过阈值的两个变量,剔除IV较低的一个
deleted_index = []
cnt_vars = len(high_IV_sorted)
for i in range(cnt_vars):
if i in deleted_index:
continue
x1 = high_IV_sorted[i][0]+"_WOE"
for j in range(cnt_vars):
if i == j or j in deleted_index:
continue
y1 = high_IV_sorted[j][0]+"_WOE"
roh = np.corrcoef(trainData[x1],trainData[y1])[0,1]
if abs(roh)>0.7:
x1_IV = high_IV_sorted[i][1]
y1_IV = high_IV_sorted[j][1]
if x1_IV > y1_IV:
deleted_index.append(j)
else:
deleted_index.append(i)
multi_analysis_vars_1 = [high_IV_sorted[i][0]+"_WOE" for i in range(cnt_vars) if i not in deleted_index]
'''
多变量分析:VIF
'''
from statsmodels.stats.outliers_influence import variance_inflation_factor
X = np.matrix(trainData[multi_analysis_vars_1])
VIF_list = [variance_inflation_factor(X, i) for i in range(X.shape[1])]
max_VIF = max(VIF_list)
print (max_VIF)
# 最大的VIF是1.32267733123,因此这一步认为没有多重共线性
multi_analysis = multi_analysis_vars_1
评分卡模型构建介绍
数据切割(分箱,离散化)及woe、iv值计算的python代码分享
利用LendingClub数据建模
构建lending club的信用评分模型
记录我是如何转型大数据分析(三)——Lending Club分析