909422229_人工智能基础了解

技术交流群:958923746,有学习视频,文档等。

ANN (人工神经网络)

 

ANN是指由大量的处理单元(神经元) 互相连接而形成的复杂网络结构,是对人脑组织结构和运行机制的某种抽象、简化和模拟。 [1]  人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。

人工神经网络有多层和单层之分,每一层包含若干神经元,各神经元之间用带可变权重的有向弧连接,网络通过对已知信息的反复学习训练,通过逐步调整改变神经元连接权重的方法,达到处理信息、模拟输入输出之间关系的目的。它不需要知道输入输出之间的确切关系,不需大量参数,只需要知道引起输出变化的非恒定因素,即非常量性参数。因此与传统的数据处理方法相比,神经网络技术在处理模糊数据、随机性数据、非线性数据方面具有明显优势,对规模大、结构复杂、信息不明确的系统尤为适用。

由Minsley和Papert提出的多层前向神经元网络(也称多层感知器)是目前最为常用的网络结构

 

人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大的容错性。它可以实现仿真、二值图像识别、预测以及模糊控制等功能。是处理非线性系统的有力工具

 

nlp (自然语言处理(AI分支))

NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。

自然语言是人类智慧的结晶,自然语言处理是人工智能中最为困难的问题之一,而对自然语言处理的研究也是充满魅力和挑战的。

理论上,NLP是一种很吸引人的人机交互方式。早期的语言处理系统如SHRDLU,当它们处于一个有限的“积木世界”,运用有限的词汇表会话时,工作得相当好。这使得研究员们对此系统相当乐观,然而,当把这个系统拓展到充满了现实世界的含糊与不确定性的环境中时,他们很快丧失了信心。

由于理解(understanding)自然语言,需要关于外在世界的广泛知识以及运用操作这些知识的能力,自然语言认知,同时也被视为一个人工智能完备(AI-complete)的问题。同时,在自然语言处理中,"理解"的定义也变成一个主要的问题。有关理解定义问题的研究已经引发关注。

 

技术交流群:958923746,有学习视频,文档等。

你可能感兴趣的:(人工智能)