Stanford机器学习---第八讲. 支持向量机SVM

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning中Andrew老师的讲解。(https://class.coursera.org/ml/class/index


第八讲. 支持向量机进行机器学习——Support Vector Machine


===============================

(一)、SVM 的 Cost Function

(二)、SVM —— Large Margin Classifier

(三)、数学角度解析为什么SVM 能形成 Large Margin Classifier(选看)

(四)、SVM Kernel 1 —— Gaussian Kernel

(五)、SVM 中 Gaussian Kernel 的使用

(六)、SVM的使用与选择



本章内容为支持向量机Support Vector Machine(SVM)的导论性讲解,在一般机器学习模型的理解上,引入SVM的概念。原先很多人,也包括我自己觉得SVM是个很神奇的概念,读完本文你会觉得,其实只是拥有不同的目标函数, 不同的模型而已,Machine Learning的本质还没有变,呵呵~

完成本文花了我很长时间,为了搞懂后面还有程序方便和参考网站大家实验,希望对大家有所帮助。




=====================================

(一)、SVM 的 Cost Function


前面的几章中我们分别就linear regression、logistic regression以及神经网络的cost function进行了讲解。这里我们通过logistic regression的cost function引入SVM。

首先回忆一下logistic regression的模型:

Stanford机器学习---第八讲. 支持向量机SVM_第1张图片


还是原先的假设,suppose我们只有两个类,y=0和y=1。那么根据上图h(x)的图形我们可以看出,

当y=1时,希望h(x)≈1,即z>>0;

当y=0时,希望h(x)≈0,即z<<0;

那么逻辑回归的cost function公式如下:

cost function我们之前已经讲过了,这里不予赘述。现在呢,我们来看看下面的两幅图,这两幅图中灰色的curve是logistic regression的cost function分别取y=1和y=0的情况,

y=1时,随着z↑,h(x)逐渐逼近1,cost逐渐减小。

y=0时,随着z↓,h(x)逐渐逼近0,cost逐渐减小。

这正是图中灰色曲线所示的曲线。

ok,现在我们来看看SVM中cost function的定义。请看下图中玫瑰色的曲线,这就是我们希望得到的cost function曲线,和logistic regression的cost function非常相近,但是分为两部分,下面呢,我们将对这个cost function进行详细讲解。

Stanford机器学习---第八讲. 支持向量机SVM_第2张图片

logistic regression的cost function:


现在呢,我们给出SVM的目标函数(cost function)定义:


该式中,cost0和cost1分别对应y=0和y=1时的目标函数定义,最后一项regularization项和logistic regression中的类似。感觉系数少了什么?是的,其实它们的最后一项本来是一样的,但是可以通过线性变换化简得到SVM的归一化项。






=====================================

(二)、SVM —— Large Margin Classifier


本节给出一个简单的结论——SVM是一个large margin classifier。什么是margin呢?下面我们做详细讲解,其理论证明将在下一节中给出。


在引入margin之前,我们回顾一下上一节中的SVM cost function curve,如下图所示分别是y取1和0时的情况。先给出一个结论,常数C取一个很大的值比较好(比如100000),这是为什么呢?

我们来看哈,C很大,就要求[]中的那部分很小(令[]中的那部分表示为W),不如令其为0,这时来分析里面的式子:

※需求1:

y=1时,W只有前一项,令W=0,就要求Cost1Tx)=0,由右图可知,这要求θTx>=1;

y=0时,W只有后一项,令W=0,就要求Cost0Tx)=0,由右图可知,这要求θTx<=-1;


Stanford机器学习---第八讲. 支持向量机SVM_第3张图片

由以上说明可知,对C的取值应该在分类是否犯错和margin的大小上做一个平衡。那么C取较大的值会带来什么效果呢?就是我们开头说的结论——SVM是一个large margin classifier。那么什么是margin?在第三章中我们已经讲过了decision boundary,它是能够将所有数据点进行很好地分类的h(x)边界。如下图所示,我们可以把绿线、粉线、蓝线或者黑线中的任意一条线当做decision boundary,但是哪一条最好呢?这里我们可以看出,绿色、粉色、蓝色这三类boundary离数据非常近,i.e.我们再加进去几个数据点,很有可能这个boundary就能很好的进行分类了,而黑色的decision boundary距离两个类都相对较远,我们希望获得的就是这样的一个decision boundary。margin呢,就是将该boundary进行平移所得到的两条蓝线的距离,如图中所指。

Stanford机器学习---第八讲. 支持向量机SVM_第4张图片

相对比:

C小,decision boundary则呈现为黑线;若C很大,就呈现粉线;

Stanford机器学习---第八讲. 支持向量机SVM_第5张图片

这个结论大家可以记住,也可以进行数学上的分析,下一节中我们将从数学角度分析,为什么SVM选用大valeu的C会形成一个large margin classifier。


再给出一个数学上对geometry margin的说明:

Stanford机器学习---第八讲. 支持向量机SVM_第6张图片

任意一个点x到分类平面的距离γ的表示如上图所示,其中y是{+1,-1}表示分类结果,x0是分类面上距x最短的点,分类平面的方程为wx+b=0,将x0带入该方程就有上面的结果了。对于一个数据集x,margin就是这个数据及所有点的margin中离hyperplane最近的距离,SVM的目的就是找到最大margin的hyperplane



练习:

Stanford机器学习---第八讲. 支持向量机SVM_第7张图片







=====================================

(三)、数学角度解析为什么SVM 能形成 Large Margin Classifier(选看)


这一节主要为了证明上一节中的结论,为什么SVM是Large Margin Classification,能形成很好的decision boundary,如果仅仅处于应用角度考虑的朋友可以略过此节。

首先我们来看两个向量内积的表现形式。假设向量uv均为二维向量我们知道u,v的内积uTv=u1v1+u2v2。表现在坐标上呢,就如下图左边所示:

首先将v投影至u向量,记其长度为p(有正负,与u同向为正,反相为负,标量),则两向量的内积uTv = ||u|| · ||v|| · cosθ = ||u|| · p = u1v1+u2v2。


Stanford机器学习---第八讲. 支持向量机SVM_第8张图片


这样一来,我们来看SVM的cost function:

由于将C设的很大,cost function只剩下后面的那项。采取简化形式,意在说明问题即可,设θ0=0,只剩下θ1θ2

则cost function J(θ)=1/2×||θ||^2


Stanford机器学习---第八讲. 支持向量机SVM_第9张图片


而根据上面的推导,有θTx=p·||θ||,其中p是x在θ上的投影,则

※需求2:

y=1时,W只有前一项,令W=0,就要求Cost1Tx)=0,由右图可知,这要求p·||θ||>=1;

y=0时,W只有后一项,令W=0,就要求Cost0Tx)=0,由右图可知,这要求p·||θ||<=-1;

如下图所示:


Stanford机器学习---第八讲. 支持向量机SVM_第10张图片


我们集中精力看为什么SVM的decision boundary有large margin(这里稍微有点儿复杂,好好看哈):

对于一个给定数据集,依旧用X表示正样本O表示负样本,绿色的线表示decision boundary蓝色的线表示θ向量的方向,玫瑰色表示数据在θ上的投影

Stanford机器学习---第八讲. 支持向量机SVM_第11张图片

我们已知boundary的角度和θ向量呈的是90°角(自己画一下就知道了)。

先看这个图,对于这样一个decision boundary(没有large margin),θ与其呈90°角如图所示,这样我们可以画出数据集X和O在θ上的投影,如图所示,非常小;如果想满足[需求2]中说的

对正样本p·||θ||>=1,

对负样本p·||θ||<=-1

就需要令||θ||很大,这就和cost function的愿望(min 1/2×||θ||^2)相违背了,因此SVM的不出来这个图中所示的decision boundary结果。

Stanford机器学习---第八讲. 支持向量机SVM_第12张图片

那么再来看下面这个图,

它选取了上一节中我们定义的“比较好的”decision boundary,两边的margin都比较大。看一下两边数据到θ的投影,都比较大,这样就可以使||θ||相对较小,满足SVM的cost function。因此按照SVM的cost function进行求解(optimization)得出的decision boundary一定是有large margin的。说明白了吧?!

Stanford机器学习---第八讲. 支持向量机SVM_第13张图片

练习:

Stanford机器学习---第八讲. 支持向量机SVM_第14张图片

分析:由图中我们可以看出,decision boundary的最优解是y=x1,这时所有数据集中的数据到θ上的投影最小值为2,换言之,想满足

对正样本p·||θ||>=1,

对负样本p·||θ||<=-1

只需要

对正样本2·||θ||>=1,

对负样本(-2)·||θ||<=-1

因此需要||θ||>=1/2,本着令cost function最小的原则,我们可知||θ||=1/2.






=====================================

(四)、SVM Kernel 1 —— Gaussian Kernel


对于一个非线性Decision boundary,我们之前利用多项式拟合的方法进行预测:

  • f1, f2, ... fn为提取出来的features。
  • 定义预测方程hθ(x)为多项式的sigmod函数值:hθ(x)=g(θ0f01f1+…+θnfn),其中fn为x的幂次项组合(如下图)
  • θ0f01f1+…+θnfn>=0时hθ(x)=1;else hθ(x)=0;

那么,除了将fn定义为x的幂次项组合,还有没有其他方法表示 f 呢?本节就引入了Kernel,核的概念。即用核函数表示f

Stanford机器学习---第八讲. 支持向量机SVM_第15张图片
对于上图的非线性拟合,我们通过计算输入原始向量与landmark之间的相似度来计算核值f:
Stanford机器学习---第八讲. 支持向量机SVM_第16张图片

发现相似度计算公式很像正态分布(高斯分布)对不对?是的!这就是高斯核函数。由下图可以看出,

x和l越相似,f越接近于1;

x与l相差越远,f越接近于0;

Stanford机器学习---第八讲. 支持向量机SVM_第17张图片

下图中的横纵坐标为x的两个维度值,高为f(new feature)。制高点为x=l的情况,此时f=1。

随着x与l的远离,f逐渐下降,趋近于0.

Stanford机器学习---第八讲. 支持向量机SVM_第18张图片


下面我们来看SVM核分类预测的结果:

引入核函数后,代数上的区别在于f变了,原来f是x1/x1^2/...,即xi幂次项乘积

引入核函数后,几何上来说可以更直观的表示是否应该归为该类了(如下图)

  • 比如我们想将坐标上的所有数据点分为两类(如下图中)红色圈内希望预测为y=1;圈外希望预测为y=0。通过训练数据集呢,我们得到了一组θ值(θ0,θ1,θ2,θ3)=(-0.5,1,1,0)以及三个点(L1,L2,L3),(具体怎么训练而成的大家先不要过分纠结,后面会讲)
  • 对于每个test数据集中的点,我们首先计算它到(L1,L2,L3)各自的相似度,也就是核函数的值(f1,f2,f3),然后带入多项式θ0f01f1+…+θnfn计算,当它>=0时,预测结果为类内点(正样本,y=1),else预测为负样本,y=0

Stanford机器学习---第八讲. 支持向量机SVM_第19张图片








=====================================

(五)、SVM 中 Gaussian Kernel 的使用


§5.1.    landmark的选取和参数向量θ的求解


上一节中我们遗留了两个问题,一个是一些L点的选取,一个是向量θ计算。这一节我们就来讲讲这两个问题。

首先来看L的选取。上一节中一提到Gaussian kernel fi 的计算:

Stanford机器学习---第八讲. 支持向量机SVM_第20张图片

这里呢,我们选择m个训练数据,并取这m个训练数据为m个landmark(L)点(不考虑证样本还是负样本),如下图所示:


Stanford机器学习---第八讲. 支持向量机SVM_第21张图片

Stanford机器学习---第八讲. 支持向量机SVM_第22张图片

PS:那么在这m个训练数据中,每一个训练数据x(i)所得的特征向量(核函数)f中,总有一维向量的值为1(因为这里x(i)=l(i))

于是,每个特征向量f有m+1维(m维训练数据[f1,f2,...,fm]附加一维f0=1)

在SVM的训练中,将Gaussian Kernel带入cost function,通过最小化该函数就可与得到参数θ,并根据该参数θ进行预测:

θTf>=0,predicty=1;

else predict y=0;

如下图所示,这里与之前讲过的cost function的区别在于用kernel f 代替了x。

Stanford机器学习---第八讲. 支持向量机SVM_第23张图片




§5.2.    landmark的选取和参数向量θ的求解


好了,至此Landmark点和θ的求取都解决了,还有一个问题,就是cost function中两个参数的确定:C和σ2


对于C,由于C=1/λ,所以

C大,λ小,overfit,产生low bias,high variance

C小,λ大,underfit,产生high bias,low variance

详细原因请参考第六章中关于bias和variance的讲解。


对于方差σ2,和正态分布中的定义一样,

σ2大,x-f 图像较为扁平;

σ2小,x-f 图像较为窄尖;


Stanford机器学习---第八讲. 支持向量机SVM_第24张图片

关于C和σ2的选取,我们来做个练习:


Stanford机器学习---第八讲. 支持向量机SVM_第25张图片


解析,过拟合说明应该适当加强cost function中的正则项所起的作用,因此应增大λ,即减小C;同时,过拟合是的只有一小部分范围内的x享有较大f,或者说x的覆盖面太窄了,所以应当增大σ2







=====================================

(六)、SVM 的 使用与选择


本节中主要介绍SVM在matlab中用libsvm中的应用,给大家一个用SVM进行实践的平台。


前面几节中我们已知用SVM进行机器学习的过程就是一个optimize参数θ的过程,这里呢,我们首先介绍一个 Chih-Chung Chang 和 Chih-Jen Lin 做的 matlab/C/Ruby/Python/Java...中通用的机器学习tool,libsvm,其基本讲解和测试我以前讲过(在这里),算是入门篇,并不详细,这里呢,我们将结合本章课程近一步学习,并用matlab实现。


首先大家来看看,想要进行SVM学习,有哪两类:


一种是No kernel(linear kernel),hθ(x)=g(θ0x01x1+…+θnxn),predict y=1 if θTx>=0;

另一种是使用kernel f(比如Gaussian Kernel),hθ(x)=g(θ0f01f1+…+θnfn),这里需要选择方差参数σ2

如下图所示:


Stanford机器学习---第八讲. 支持向量机SVM_第26张图片

需要注意的是,不管用那种方法,都需要在ML之前进行Normalization归一化!

当然,除了Gaussian kernel,我们还有很多其他的kernel可以用,比如polynomial kernel等,如下图所示,但andrew表示他本人不会经常去用(或者几乎不用)以下"more esoteric"中的核,一个原因是其他的核不一定起作用。我们讲一下polynomial kernel:

polynomial 核形如 K(x,l)= (xTl+c)d,也用来表示两个object的相似度

Stanford机器学习---第八讲. 支持向量机SVM_第27张图片

首先给大家引入一个数据集,在该数据集中,我们可以进行初步的libsvm训练和预测,如这篇文章中所说,这个也是最基本的no kernel(linear kernel)。

然后呢,给大家一个reference,这是libsvm中traing基本的语法:


Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');
libsvm_options:
-s svm_type : set type of SVM (default 0)
    0 -- C-SVC
    1 -- nu-SVC
    2 -- one-class SVM
    3 -- epsilon-SVR
    4 -- nu-SVR
-t kernel_type : set type of kernel function (default 2)
    0 -- linear: u'*v
    1 -- polynomial: (gamma*u'*v + coef0)^degree
    2 -- radial basis function: exp(-gamma*|u-v|^2)
    3 -- sigmoid: tanh(gamma*u'*v + coef0)
    4 -- precomputed kernel (kernel values in training_instance_matrix)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n : n-fold cross validation mode
-q : quiet mode (no outputs)

下面给大家一个例子:


function [ output_args ] = Nonlinear_SVM( input_args )
%NONLINEAR_SVM Summary of this function goes here
%   Detailed explanation goes here

%generate data1
r=sqrt(rand(100,1));%generate 100 random radius
t=2*pi*rand(100,1);%generate 100 random angles, in range [0,2*pi]
data1=[r.*cos(t),r.*sin(t)];%points

%generate data2
r2=sqrt(3*rand(100,1)+1);%generate 100 random radius
t2=2*pi*rand(100,1);%generate 100 random angles, in range [0,2*pi]
data2=[r2.*cos(t2),r2.*sin(t2)];%points

%plot datas
 plot(data1(:,1),data1(:,2),'r.')
 hold on
plot(data2(:,1),data2(:,2),'b.')
ezpolar(@(x)1);%在极坐标下画ρ=1,θ∈[0,2π]的图像,即x^2+y^2=1
ezpolar(@(x)2);
axis equal %make x and y axis with equal scalar
hold off

%build a vector for classification
data=[data1;data2];     %merge the two dataset into one
datalabel=ones(200,1);  %label for the data
datalabel(1:100)=-1;

%train with Non-linear SVM classifier use Gaussian Kernel

model=svmtrain(datalabel,data,'-c 100 -g 4'); 

end


该例中我们分别生成了100个正样本和100个负样本,如下图所示,因为kernel type default=2(即Gaussian kernel),通过svmtrain(datalabel,data,'-c 100 -g 4')我们设置了第五节中奖的参数——C(c)和 2σ2(g)分别为100和4。

运行结果:

>> Nonlinear_SVM
*
optimization finished, #iter = 149
nu = 0.015538
obj = -155.369263, rho = 0.634344
nSV = 33, nBSV = 0
Total nSV = 33


Stanford机器学习---第八讲. 支持向量机SVM_第28张图片


最后,我们比较一下logistic regresion和 SVM:

用n表示feature个数,m表示training exampl个数。


①当n>=m,如n=10000,m=10~1000时,建议用logistic regression, 或者linear kernel的SVM

②如果n小,m不大不小,如n=1~1000,m=10~10000,建议用Gaussian Kernel的SVM

③如果n很小,m很大,如n=1~1000,m>50000,建议增加更多的feature并使用logistic regression, 或者linear kernel的SVM

原因,①模型简单即可解决,③如果还用Gaussian kernel会导致很慢,所以还选择logistic regression或者linear kernel

神经网络可以解决以上任何问题,但是速度是一个很大的问题。


详见下图:


Stanford机器学习---第八讲. 支持向量机SVM_第29张图片


test:

Stanford机器学习---第八讲. 支持向量机SVM_第30张图片


我们可以把所有数据分为testset和training set两部分进行训练,example:

load heart_scale
[N D] = size(heart_scale_inst);

% Determine the train and test index,select top 200 as training data
% else as test data
trainIndex = zeros(N,1); trainIndex(1:200) = 1;
testIndex = zeros(N,1); testIndex(201:N) = 1;
trainData = heart_scale_inst(trainIndex==1,:);
trainLabel = heart_scale_label(trainIndex==1,:);
testData = heart_scale_inst(testIndex==1,:);
testLabel = heart_scale_label(testIndex==1,:);

% Train the SVM
model = svmtrain(trainLabel, trainData, '-c 1 -g 0.07 -b 1');
% Use the SVM model to classify the data
[predict_label, accuracy, prob_values] = svmpredict(testLabel, testData, model, '-b 1'); % run the SVM model on the test data


运行结果:

optimization finished, #iter = 87
nu = 0.426369
obj = -56.026822, rho = -0.051128
nSV = 77, nBSV = 62
Total nSV = 77
*
optimization finished, #iter = 99
nu = 0.486493
obj = -64.811759, rho = 0.328505
nSV = 87, nBSV = 68
Total nSV = 87
*
optimization finished, #iter = 101
nu = 0.490332
obj = -64.930603, rho = 0.424679
nSV = 87, nBSV = 67
Total nSV = 87
*
optimization finished, #iter = 121
nu = 0.483649
obj = -64.046644, rho = 0.423762
nSV = 87, nBSV = 65
Total nSV = 87
*
optimization finished, #iter = 93
nu = 0.470980
obj = -63.270339, rho = 0.458209
nSV = 83, nBSV = 67
Total nSV = 83
*
optimization finished, #iter = 137
nu = 0.457422
obj = -76.730867, rho = 0.435233
nSV = 104, nBSV = 81
Total nSV = 104
Accuracy = 81.4286% (57/70) (classification)
>> 


这里只是一部分我做过的实验,希望有朋友能够有更完善的程序或者更好的资料推荐~谢谢!

==============================================
小结

本章讲述了Support Vector Machine的基本原理、SVM与linear regression、logistic regression、神经网络的关系和matlab中通过Libsvm库对数据进行训练,希望对大家有所帮助。


关于Machine Learning更多的学习资料将继续更新,敬请关注本博客和新浪微博Sophia_qing




Reference:

1.How to build a custom Kernel function and use it with Libsvm in C?

2.Libsvm在matlab中的使用

3. SVM parameter tuning and number of SVs (Matlab libsvm)

4.Libsvm for matlab_Kittipat




你可能感兴趣的:(Machine,Learning,MATLAB)