PHash算法即感知哈希算法/Perceptual Hash algorithm,计算基于低频的均值哈希.对每张图像生成一个指纹字符串,通过对该字符串比较可以判断图像间的相似度.
将图像转为灰度图,然后将图片大小调整为32*32像素并通过DCT变换,取左上角的8*8像素区域。然后计算这64个像素的灰度值的均值。将每个像素的灰度值与均值对比,大于均值记为1,小于均值记为0,得到64位哈希值。
resize(src, src, Size(32, 32));
Mat srcDCT;
dct(src, srcDCT);
double sum = 0;
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
sum += srcDCT.at(i,j);
double average = sum/64;
Mat phashcode= Mat::zeros(Size(8, 8), CV_8U);
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
phashcode.at(i,j) = srcDCT.at(i,j) > average ? 1:0;
int d = 0;
for (int n = 0; n < srchash.size[1]; n++)
if (srchash.at<uchar>(0,n) != dsthash.at<uchar>(0,n)) d++;
即,计算两幅图哈希值之间的汉明距离,汉明距离越大,两图片越不相似。
如图在下图中对比各个图像与图person.jpg的汉明距离,以此衡量两图之间的额相似度。
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
int fingerprint(Mat src, Mat* hash);
int main()
{
Mat src = imread("E:\\image\\image\\image\\person.jpg", 0);
if(src.empty())
{
cout << "the image is not exist" << endl;
return -1;
}
Mat srchash, dsthash;
fingerprint(src, &srchash);
for(int i = 1; i <= 8; i++)
{
string path0 = "E:\\image\\image\\image\\person";
string number;
stringstream ss;
ss << i;
ss >> number;
string path = "E:\\image\\image\\image\\person" + number +".jpg";
Mat dst = imread(path, 0);
if(dst.empty())
{
cout << "the image is not exist" << endl;
return -1;
}
fingerprint(dst, &dsthash);
int d = 0;
for (int n = 0; n < srchash.size[1]; n++)
if (srchash.at(0,n) != dsthash.at(0,n)) d++;
cout <<"person" << i <<" distance= " <"\n";
}
system("pause");
return 0;
}
int fingerprint(Mat src, Mat* hash)
{
resize(src, src, Size(32, 32));
src.convertTo(src, CV_32F);
Mat srcDCT;
dct(src, srcDCT);
srcDCT = abs(srcDCT);
double sum = 0;
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
sum += srcDCT.at<float>(i,j);
double average = sum/64;
Mat phashcode= Mat::zeros(Size(8, 8), CV_8U);
for (int i = 0; i < 8; i++)
for (int j = 0; j < 8; j++)
phashcode.at<char>(i,j) = srcDCT.at<float>(i,j) > average ? 1:0;
*hash = phashcode.reshape(0,1).clone();
return 0;
}
可以看出若将阈值设置为20则可将后三张其他图片筛选掉。