【OpenCV】用定制内核做卷积

OpenCV预定义的很多滤波器,也就是滤波函数都会使用——kernel。
kernel从数学上是一个具有奇数行和奇数列的矩阵,用来对一个区域的像素做mix up或者卷积运算。
对于图像像素来说,它是一组权重,它决定了该如何计算目标像素点的新值。

kernel_33 = np.array([[-1, -1, -1],
                      [-1,  8, -1],
                      [-1, -1, -1]])

数学上我们设 A A =

111181111 [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ]

目标区域的像素值为 B B =
a1a4a7a2a5a8a3a6a9 [ a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ]

对于目标点的像素,其新的像素值为: A×B A × B
从实际意义上考虑:会将目标点的像素值大大增加,那么与相邻的像素差别加大,使得图像锐化。

书中,修改代码,在Cameo中添加self._curveFilter = filters.BGRPortraCurveFilter()
但是寻不到BGRPortraCurveFilter(),遂查找,原来是漏写了。。
utils.py中添加如下代码:

import cv2, numpy, scipy.interpolate


def createCurveFunc(points):
    """Return a function derived from control points."""
    if points is None:
        return None
    num_points = len(points)
    if num_points < 2:
        return None
    xs, ys = zip(*points)
    if num_points < 4:
        kind = 'linear'
        # 'quadratic' is not implemented.
    else:
        kind = 'cubic'
    return scipy.interpolate.interp1d(xs, ys, kind, bounds_error=False)


def createLookupArray(func, length = 256):
    """Return a lookup for whole-number inputs to a function. The lookup values are clamped to [0, length - 1]."""
    if func is None:
        return None
    lookup_array = numpy.empty(length)
    i = 0
    while i < length:
        func_i = func(i)
        lookup_array[i] = min(max(0, func_i), length - 1)
        i += 1
    return lookup_array


def applyLookupArray(lookup_array, src, dst):
    """Map a source to a destination using a lookup."""
    if lookup_array is None:
        return
    dst[:] = lookup_array[src]


def createCompositeFunc(func0, func1):
    """Return a composite of two functions."""
    if func0 is None:
        return func1
    if func1 is None:
        return func0
    return lambda x: func0(func1(x))


def createFlatView(array):
    """Return a 1D view of an array of any dimensionality."""
    flat_view = array.view()
    flat_view.shape = array.size
    return flat_view

filters.py添加:

class BGRFuncFilter(object):

    def __init__(self, vFunc=None, bFunc=None, gFunc=None, rFunc=None, dtype=numpy.uint8) :

        length = numpy.iinfo(dtype).max + 1
        self._bLookupArray = utils.createLookupArray(utils.createCompositeFunc(bFunc, vFunc), length)
        self._gLookupArray = utils.createLookupArray(utils.createCompositeFunc(gFunc, vFunc), length)
        self._rLookupArray = utils.createLookupArray(utils.createCompositeFunc(rFunc, vFunc), length)

    def apply(self, src, dst) :

        """Apply the filter with a BGR source/destination."""
        b, g, r = cv2.split(src)
        utils.applyLookupArray(self._bLookupArray, b, b)
        utils.applyLookupArray(self._gLookupArray, g, g)
        utils.applyLookupArray(self._rLookupArray, r, r)
        cv2.merge([ b, g, r ], dst)



class BGRCurveFilter(BGRFuncFilter):

    def __init__(self, vPoints=None, bPoints=None, gPoints=None, rPoints=None, dtype=numpy.uint8):
        BGRFuncFilter.__init__(self, utils.createCurveFunc(vPoints), utils.createCurveFunc(bPoints),
                               utils.createCurveFunc(gPoints), utils.createCurveFunc(rPoints), dtype)


class BGRPortraCurveFilter(BGRCurveFilter):
    def __init__(self, dtype = numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            vPoints = [ (0, 0), (23, 20), (157, 173), (255, 255) ],
            bPoints = [ (0, 0), (41, 46), (231, 228), (255, 255) ],
            gPoints = [ (0, 0), (52, 47), (189, 196), (255, 255) ],
            rPoints = [ (0, 0), (69, 69), (213, 218), (255, 255) ],
            dtype = dtype)

你可能感兴趣的:(Python,opencv)