Spark SQL

Spark SQL

  • Spark SQL实战详解
  • 一、Spark SQL的特点:
  • 二、Spark SQL数据抽象:
  • 三、Spark SQL客户端查询:
  • 四、Spark SQL查询方式
    • DataFrame查询方式
      • (1)、DSL风格:
      • (2)、SQL风格:
    • DataSet查询方式
  • 五、DataFrame、Dataset和RDD互操作
    • 1、RDD->DataFrame:
    • 2、DataFrame->RDD:
    • 3、RDD->DataSet:
    • 4、DataSet->DataSet:
    • 5、DataFrame -> DataSet:
    • 6、DataSet -> DataFrame:
  • 六、用户自定义函数
    • 1、用户自定义UDF函数
    • 2、用户自定义聚合函数
  • 七、Spark SQL和Hive的继承
    • 内置Hive
    • 外部Hive(这里主要使用这个方法)
  • 八、Spark SQL的数据源
    • 输入
    • 输出
  • 九、Spark SQL实战
    • 1、数据说明
    • 2、任务
    • 3、步骤

Spark SQL实战详解

sparkSQL实战详解

一、Spark SQL的特点:

1、和Spark Core的无缝集成,可以在写整个RDD应用的时候,配置Spark SQL来完成逻辑实现。
2、统一的数据访问方式,Spark SQL提供标准化的SQL查询。
3、Hive的继承,Spark SQL通过内嵌的hive或者连接外部已经部署好的hive案例,实现了对hive语法的继承和操作。
4、标准化的连接方式,Spark SQL可以通过启动thrift Server来支持JDBC、ODBC的访问,将自己作为一个BI Server使用

二、Spark SQL数据抽象:

1、RDD(Spark1.0)->DataFrame(Spark1.3)->DataSet(Spark1.6)
2、Spark SQL提供了DataFrame和DataSet的数据抽象
3、DataFrame就是RDD+Schema,可以认为是一张二维表格,劣势在于编译器不进行表格中的字段的类型检查,在运行期进行检查
4、DataSet是Spark最新的数据抽象,Spark的发展会逐步将DataSet作为主要的数据抽象,弱化RDD和DataFrame.DataSet包含了DataFrame所有的优化机制。除此之外提供了以样例类为Schema模型的强类型
5、DataFrame=DataSet[Row]
6、DataFrame和DataSet都有可控的内存管理机制,所有数据都保存在非堆上,都使用了catalyst进行SQL的优化。

三、Spark SQL客户端查询:

1、可以通过Spark-shell来操作Spark SQL,spark作为SparkSession的变量名,sc作为SparkContext的变量名
2、可以通过Spark提供的方法读取json文件,将json文件转换成DataFrame
3、可以通过DataFrame提供的API来操作DataFrame里面的数据。
4、可以通过将DataFrame注册成为一个临时表的方式,来通过Spark.sql方法运行标准的SQL语句来查询。

四、Spark SQL查询方式

DataFrame查询方式

1、DataFrame支持两种查询方式:一种是DSL风格,另外一种是SQL风格

(1)、DSL风格:

需要引入import spark.implicit._这个隐式转换,可以将DataFrame隐式转换成RDD

(2)、SQL风格:

a、需要将DataFrame注册成一张表格,如果通过CreateTempView这种方式来创建,那么该表格Session有效,如果通过CreateGlobalTempView来创建,那么该表格跨Session有效,但是SQL语句访问该表格的时候需要加上前缀global_temp
b、需要通过sparkSession.sql方法来运行你的SQL语句

DataSet查询方式

定义一个DataSet,先定义一个Case类

五、DataFrame、Dataset和RDD互操作

1、RDD->DataFrame:

普通方式:例如rdd.map(para(para(0).trim(),para(1).trim().toInt)).toDF(“name”,“age”)

通过反射来设置schema,例如:

#通过反射设置schema,数据集是spark自带的people.txt,路径在下面的代码中
case class Person(name:String,age:Int)
val peopleDF=spark.sparkContext.textFile("file:///root/spark/spark2.4.1/examples/src/main/resources/people.txt").map(_.split(",")).map(para=>Person(para(0).trim,para(1).trim.toInt)).toDF
peopleDF.show

Spark SQL_第1张图片


#注册成一张临时表
peopleDF.createOrReplaceTempView("persons")
val teen=spark.sql("select name,age from persons where age between 13 and 29")
teen.show

Spark SQL_第2张图片

这时teen是一张表,每一行是一个row对象,如果需要访问Row对象中的每一个元素,可以通过下标 row(0);你也可以通过列名 row.getAs[String](“name”)
Spark SQL_第3张图片
也可以使用getAs方法:

Spark SQL_第4张图片
3、通过编程的方式来设置schema,适用于编译器不能确定列的情况

val peopleRDD=spark.sparkContext.textFile("file:///root/spark/spark2.4.1/examples/src/main/resources/people.txt")
val schemaString="name age"
val filed=schemaString.split(" ").map(filename=> org.apache.spark.sql.types.StructField(filename,org.apache.spark.sql.types.StringType,nullable = true))
val schema=org.apache.spark.sql.types.StructType(filed)
peopleRDD.map(_.split(",")).map(para=>org.apache.spark.sql.Row(para(0).trim,para(1).trim))
val peopleDF=spark.createDataFrame(res6,schema)
peopleDF.show

2、DataFrame->RDD:

dataFrame.rdd

3、RDD->DataSet:

rdd.map(para=> Person(para(0).trim(),para(1).trim().toInt)).toDS

4、DataSet->DataSet:

dataSet.rdd

5、DataFrame -> DataSet:

dataFrame.to[Person]

6、DataSet -> DataFrame:

dataSet.toDF

六、用户自定义函数

1、用户自定义UDF函数

通过spark.udf功能用户可以自定义函数
自定义udf函数:
1、 通过spark.udf.register(name,func)来注册一个UDF函数,name是UDF调用时的标识符,fun是一个函数,用于处理字段。
2、 需要将一个DF或者DS注册为一个临时表
3、 通过spark.sql去运行一个SQL语句,在SQL语句中可以通过name(列名)方式来应用UDF函数

2、用户自定义聚合函数

弱类型用户自定义聚合函数
新建一个Class 继承UserDefinedAggregateFunction ,然后复写方法:


override def inputS	chema: StructType = ???
override def bufferSchema: StructType = ???
override def dataType: DataType = ???
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = ???
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = ???
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = ???
override def evaluate(buffer: Row): Any = ???

你需要通过spark.udf.resigter去注册你的UDAF函数。

需要通过spark.sql去运行你的SQL语句,可以通过 select UDAF(列名) 来应用你的用户自定义聚合函数。

强类型用户自定义聚合函数
1、新建一个class,继承Aggregator[Employee, Average, Double],其中Employee是在应用聚合函数的时候传入的对象,Average是聚合函数在运行的时候内部需要的数据结构,Double是聚合函数最终需要输出的类型。这些可以根据自己的业务需求去调整。复写相对应的方法:


override def zero: Average = ???
override def reduce(b: Average, a: Employee): Average = ???
override def merge(b1: Average, b2: Average): Average = ???
override def finish(reduction: Average): Double = ???
override def bufferEncoder: Encoder[Average] = ???
override def outputEncoder: Encoder[Double] = ???

2、新建一个UDAF实例,通过DF或者DS的DSL风格语法去应用。

七、Spark SQL和Hive的继承

内置Hive

1、Spark内置有Hive,Spark2.1.1 内置的Hive是1.2.1。
2、需要将core-site.xml和hdfs-site.xml 拷贝到spark的conf目录下。如果Spark路径下发现metastore_db,需要删除【仅第一次启动的时候】。
3、在你第一次启动创建metastore的时候,你需要指定spark.sql.warehouse.dir这个参数,
比如:bin/spark-shell --conf spark.sql.warehouse.dir=hdfs://master01:9000/spark_warehouse
4、注意,如果你在load数据的时候,需要将数据放到HDFS上。

外部Hive(这里主要使用这个方法)

1、需要将hive-site.xml 拷贝到spark的conf目录下。
2、如果hive的metestore使用的是mysql数据库,那么需要将mysql的jdbc驱动包放到spark的jars目录下。

3、可以通过spark-sql或者spark-shell来进行sql的查询。完成和hive的连接。
在这里插入图片描述
这就是hive里面的表Spark SQL_第5张图片

八、Spark SQL的数据源

输入

对于Spark SQL的输入需要使用sparkSession.read方法

1、通用模式 sparkSession.read.format(“json”).load(“path”) 支持类型:parquet、json、text、csv、orc、jdbc
2、专业模式 sparkSession.read.json、 csv 直接指定类型。

输出

对于Spark SQL的输出需要使用 sparkSession.write方法

1、通用模式 dataFrame.write.format(“json”).save(“path”) 支持类型:parquet、json、text、csv、orc

2、专业模式 dataFrame.write.csv(“path”) 直接指定类型

3、如果你使用通用模式,spark默认parquet是默认格式、sparkSession.read.load 加载的默认是parquet格式dataFrame.write.save也是默认保存成parquet格式。

4、如果需要保存成一个text文件,那么需要dataFrame里面只有一列(只需要一列即可)。

九、Spark SQL实战

1、数据说明

这里有三个数据集,合起来大概有几十万条数据,是关于货品交易的数据集。
在这里插入图片描述

2、任务

这里有三个需求:
1、计算所有订单中每年的销售单数、销售总额
2、计算所有订单每年最大金额订单的销售额
3、计算所有订单中每年最畅销货品

3、步骤

1、加载数据:
tbStock.txt


#代码
case class tbStock(ordernumber:String,locationid:String,dateid:String) extends Serializable
val tbStockRdd=spark.sparkContext.textFile("file:///root/dataset/tbStock.txt")
val tbStockDS=tbStockRdd.map(_.split(",")).map(attr=>tbStock(attr(0),attr(1),attr(2))).toDS
tbStockDS.show()

在这里插入图片描述
Spark SQL_第6张图片

tbStockDetail.txt


case class tbStockDetail(ordernumber:String,rownum:Int,itemid:String,number:Int,price:Double,amount:Double) extends Serializable
val tbStockDetailRdd=spark.sparkContext.textFile("file:///root/dataset/tbStockDetail.txt")
val tbStockDetailDS=tbStockDetailRdd.map(_.split(",")).map(attr=>tbStockDetail(attr(0),attr(1).trim().toInt,attr(2),attr(3).trim().toInt,attr(4).trim().toDouble,attr(5).trim().toDouble)).toDS
tbStockDetailDS.show()

Spark SQL_第7张图片
tbDate.txt


case class tbDate(dateid:String,years:Int,theyear:Int,month:Int,day:Int,weekday:Int,week:Int,quarter:Int,period:Int,halfmonth:Int) extends Serializable
val tbDateRdd=spark.sparkContext.textFile("file:///root/dataset/tbDate.txt")
val tbDateDS=tbDateRdd.map(_.split(",")).map(attr=>tbDate(attr(0),attr(1).trim().toInt,attr(2).trim().toInt,attr(3).trim().toInt,attr(4).trim().toInt,attr(5).trim().toInt,attr(6).trim().toInt,attr(7).trim().toInt,attr(8).trim().toInt,attr(9).trim().toInt)).toDS
tbDateDS.show()

Spark SQL_第8张图片

2、注册表


tbStockDS.createOrReplaceTempView("tbStock")
tbDateDS.createOrReplaceTempView("tbDate")
tbStockDetailDS.createOrReplaceTempView("tbStockDetail")

在这里插入图片描述

3、解析表
1、计算所有订单中每年的销售单数、销售总额


select c.theyear,count(distinct a.ordernumber),sum(b.amount)
from tbStock a
join tbStockDetail b on a.ordernumber=b.ordernumber
join tbDate c on a.dateid=c.dateid
group by c.theyear
order by c.theyear

Spark SQL_第9张图片
2、计算所有订单每年最大金额订单的销售额

a、先统计每年每个订单的销售额

select a.dateid,a.ordernumber,sum(b.amount) as SumOfAmount
from tbStock a
join tbStockDetail b on a.ordernumber=b.ordernumber
group by a.dateid,a.ordernumber

Spark SQL_第10张图片

b、计算最大金额订单的销售额

select d.theyear,c.SumOfAmount as SumOfAmount 
from
(select a.dateid,a.ordernumber,sum(b.amount) as SumOfAmount 
from tbStock a
join tbStockDetail b on a.ordernumber=b.ordernumber  
group by a.dateid,a.ordernumber) c  
join tbDate d on c.dateid=d.dateid  
group by d.theyear
order by theyear desc

Spark SQL_第11张图片

3、计算所有订单中每年最畅销货品

a、求出每年每个货品的销售额

select c.theyear,b.itemid,sum(b.amount) as SumOfAmount 
from tbStock a 
join tbStockDetail b on a.ordernumber=b.ordernumber 
join tbDate c on a.dateid=c.dateid 
group by c.theyear,b.itemid

Spark SQL_第12张图片
b、在a的基础上,统计每年单个货品的最大金额


select d.theyear,max(d.SumOfAmount) as MaxOfAmount 
from
(select c.theyear,b.itemid,sum(b.amount) as SumOfAmount 
from tbStock a 
join tbStockDetail b on a.ordernumber=b.ordernumber 
join tbDate c on a.dateid=c.dateid 
group by c.theyear,b.itemid) d 
group by theyear

Spark SQL_第13张图片

c、用最大销售额和统计好的每个货品的销售额join,以及用年join,集合得到最畅销货品那一行信息


select distinct e.theyear,e.itemid,f.maxofamount 
from
(select c.theyear,b.itemid,sum(b.amount) as sumofamount 
from tbStock a 
join tbStockDetail b on a.ordernumber=b.ordernumber 
join tbDate c on a.dateid=c.dateid 
group by c.theyear,b.itemid) e 
join
(select d.theyear,max(d.sumofamount) as maxofamount 
from
(select c.theyear,b.itemid,sum(b.amount) as sumofamount 
from tbStock a 
join tbStockDetail b on a.ordernumber=b.ordernumber 
join tbDate c on a.dateid=c.dateid 
group by c.theyear,b.itemid) d 
group by d.theyear) f on e.theyear=f.theyear 
and e.sumofamount=f.maxofamount order by e.theyear

Spark SQL_第14张图片

你可能感兴趣的:(大数据,➹➹➹⑤Spark)