转:使用Python对音频进行频谱分析

#转自 http://blog.sina.com.cn/s/blog_40793e970102w3m2.html
import wave
import pyaudio
import numpy
import pylab

#打开WAV文档,文件路径根据需要做修改
wf = wave.open("test.wav", "rb")
#创建PyAudio对象
p = pyaudio.PyAudio()
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(),
rate=wf.getframerate(),
output=True)
nframes = wf.getnframes()
framerate = wf.getframerate()
#读取完整的帧数据到str_data中,这是一个string类型的数据
str_data = wf.readframes(nframes)
wf.close()
#将波形数据转换为数组
# A new 1-D array initialized from raw binary or text data in a string.
wave_data = numpy.fromstring(str_data, dtype=numpy.short)
#将wave_data数组改为2列,行数自动匹配。在修改shape的属性时,需使得数组的总长度不变。
wave_data.shape = -1,2
#将数组转置
wave_data = wave_data.T
#time 也是一个数组,与wave_data[0]或wave_data[1]配对形成系列点坐标
#time = numpy.arange(0,nframes)*(1.0/framerate)
#绘制波形图
#pylab.plot(time, wave_data[0])
#pylab.subplot(212)
#pylab.plot(time, wave_data[1], c="g")
#pylab.xlabel("time (seconds)")
#pylab.show()
#
# 采样点数,修改采样点数和起始位置进行不同位置和长度的音频波形分析
N=44100
start=0 #开始采样位置
df = framerate/(N-1) # 分辨率
freq = [df*n for n in range(0,N)] #N个元素
wave_data2=wave_data[0][start:start+N]
c=numpy.fft.fft(wave_data2)*2/N
#常规显示采样频率一半的频谱
d=int(len(c)/2)
#仅显示频率在4000以下的频谱
while freq[d]>4000:
    d-=10
pylab.plot(freq[:d-1],abs(c[:d-1]),'r')
pylab.show()

你可能感兴趣的:(python)