U25%(1,16) and U25%(1,168)on《C4.5:programs for machine learning》

when calculating
U C F U_{CF} UCF(e,N)
CF: Confidence Level(here is 25%)
e:misclassifying counts of current subtree we focus on
N:counts of sub-datasets relevant to current subtree who is under judgment whether to be pruned or not.

“Pr” is short for “Pessimistic error rate”.

U C F U_{CF} UCF(e,N)=Pr= e + 0.5 + C o e f f 2 2 + C o e f f 2 ⋅ { ( e + 0.5 ) [ 1 − e + 0.5 N ] + C o e f f 2 4 } N + C o e f f 2 ① \frac{e+0.5+ \frac{Coeff^2}{2}+ \sqrt{ Coeff^2·\{ (e+0.5)[1- \frac{e+0.5}{N} ]+ \frac{Coeff^2}{4} \} } } {N+Coeff^2}① N+Coeff2e+0.5+2Coeff2+Coeff2{(e+0.5[1Ne+0.5]+4Coeff2}

The method to get   C o e f f \ Coeff  Coeff is as follows:

C o e f f − D e v i a t i o n [ i − 1 ] D e v i a t i o n [ i ] − D e v i a t i o n [ i − 1 ] = C o n f i d e n c e   L e v e l − v a l [ i − 1 ] v a l [ i ] − v a l [ i − 1 ] ② \frac{Coeff-Deviation[i-1]}{Deviation[i]-Deviation[i-1]}=\frac{Confidence \ Level-val[i-1]}{val[i]-val[i-1]}② Deviation[i]Deviation[i1]CoeffDeviation[i1]=val[i]val[i1]Confidence Levelval[i1]

Now Let’s analyse the meaning of ② and how to get “i” in formula ②.

What is Deviation and Val?
Val[] = { 0, 0.001, 0.005, 0.01, 0.05, 0.10, 0.20, 0.40, 1.00},
Deviation[] = {4.0, 3.09, 2.58, 2.33, 1.65, 1.28, 0.84, 0.25, 0.00};

for Normal Distribution:
P{X>Deviation[i]}=val[i],
for example:
P{X>2.58}=0.005
--------------------

Now let’s analyse the whole meaning of formula ②

the red line is P ( X > x ) = ∫ x + ∞ 1 2 π e − x 2 2 d x P(X>x)=\int_x^{+∞}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P(X>x)=x+2π 1e2x2dx

the blue line is f ( x ) = 1 2 π e − x 2 2 f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} f(x)=2π 1e2x2
and the two points are:
(deviation[i],val[i])=(0.25,0.4)
(deviation[i-1,val[i-1])=(0.84,0.2)U25%(1,16) and U25%(1,168)on《C4.5:programs for machine learning》_第1张图片

Let’s amplify the above figure to the following picture:
U25%(1,16) and U25%(1,168)on《C4.5:programs for machine learning》_第2张图片
so tan C= V a l [ i ] − V a l [ i − 1 ] D e v i a t i o n [ i − 1 ] − D e v i a t i o n [ i ] = C o n f i d e n c e   L e v e l − V a l [ i − 1 ] D e v i a t i o n [ i − 1 ] − C o e f f \frac{Val[i]-Val[i-1]}{Deviation[i-1]-Deviation[i]}=\frac{Confidence\ Level-Val[i-1]}{Deviation[i-1]-Coeff} Deviation[i1]Deviation[i]Val[i]Val[i1]=Deviation[i1]CoeffConfidence LevelVal[i1]

then we can get ②and compute C o e f f Coeff Coeff and C o e f f 2 Coeff^2 Coeff2

but how to get “i” in above formula?
when V a l [ i − 1 ] < C o n f i d e n c e   l e v e l ≤ V a l [ i ] Val[i-1]<Confidence \ level≤Val[i] Val[i1]Confidence levelVal[i]
is satisfied,
we get “i”.
when Confidence Level=0.25
i=7
val[i-1]=0.2
val[i]=0.4
deviation[i-1]=0.84
deviation[i]=0.25
substitute the above values in ②
we get Coeff=0.6925
then,
C o e f f 2 = 0.479556 Coeff^2=0.479556 Coeff2=0.479556
--------------------

**Now Let’s calculate **
U 0.25 ( 1 , 16 ) U_{0.25}(1,16) U0.25(1,16)
CF=0.25
e=1
N=16
C o e f f 2 = 0.479556 Coeff^2=0.479556 Coeff2=0.479556
We’ll get :
Pr=

1 + 0.5 + 0.479556 2 + 0.479556 ⋅ { ( 1 + 0.5 ) [ 1 − 1 + 0.5 16 ] + 0.479556 4 } 16 + 0.479556 \frac{1+0.5+ \frac{0.479556}{2}+ \sqrt{ 0.479556·\{ (1+0.5)[1- \frac{1+0.5}{16} ]+ \frac{0.479556}{4} \} } } {16+0.479556} 16+0.4795561+0.5+20.479556+0.479556{(1+0.5[1161+0.5]+40.479556} =0.156681

N·Pr=16×0.156681=2.507
Compared with Quinlan’s book page 42th:

U25%(1,16) and U25%(1,168)on《C4.5:programs for machine learning》_第3张图片

Now Let’s calculate
U 0.25 ( 1 , 168 ) U_{0.25}(1,168) U0.25(1,168)
CF=0.25
e=1
N=168

Pr= 1 + 0.5 + 0.479556 2 + 0.479556 ⋅ { ( 1 + 0.5 ) [ 1 − 1 + 0.5 168 ] + 0.479556 4 } 168 + 0.479556 = 0.015536 \frac{1+0.5+ \frac{0.479556}{2}+ \sqrt{ 0.479556·\{ (1+0.5)[1- \frac{1+0.5}{168} ]+ \frac{0.479556}{4} \} } } {168+0.479556}=0.015536 168+0.4795561+0.5+20.479556+0.479556{(1+0.5[11681+0.5]+40.479556} =0.015536

N ⋅ U 0.25 ( 1 , 168 ) = N ⋅ P r = 168 ⋅ 0.015536 = 2.61 N·U_{0.25}(1,168)=N·Pr=168·0.015536=2.61 NU0.25(1,168)=NPr=1680.015536=2.61
Compared with Quinlan’s Book on Page 42th:
U25%(1,16) and U25%(1,168)on《C4.5:programs for machine learning》_第4张图片

The code to veriy the above value:

/*************************************************************************/
/*									 */
/*  Statistical routines for C4.5					 */
/*  -----------------------------					 */
/*									 */
/*************************************************************************/
#include  
#include 

									
/*************************************************************************/
/*									 */
/*  Compute the additional errors if the error rate increases to the	 */
/*  upper limit of the confidence level.  The coefficient is the	 */
/*  square of the number of standard deviations corresponding to the	 */
/*  selected confidence level.  (Taken from Documenta Geigy Scientific	 */
/*  Tables (Sixth Edition), p185 (with modifications).)			 */
/*									 */
/*************************************************************************/
float CF=0.25;

float Val[] = {  0,  0.001, 0.005, 0.01, 0.05, 0.10, 0.20, 0.40, 1.00},//概率
      Dev[] = {4.0,  3.09,  2.58,  2.33, 1.65, 1.28, 0.84, 0.25, 0.00};//这个就是分位点
      // P{X>Dev[i]}=val[i],
      // according to standardized normal distribution N(0,1)
      // for example:
      // P{X>2.58}=0.005,


float AddErrs(float N, float e)//叶子的悲观错误
{
    static float Coeff=0;
    float Val0, Pr;

    if ( ! Coeff )//compute only once when pruning trees
    {
	/*  Compute and retain the coefficient value, interpolating from
	    the values in Val and Dev  */

	int i;

	i = 0;
	while ( CF > Val[i] ) i++;//这里可以看到,是根据置信度对悲观错误数量进行计算的。
    //但是呢,也没有像理论中直接计算“悲观错误率”

	Coeff = Dev[i-1] +
		  (Dev[i] - Dev[i-1]) * (CF - Val[i-1]) /(Val[i] - Val[i-1]);
	Coeff = Coeff * Coeff;
    printf("Coeff=%f\n",Coeff);//CF定下来以后,Coeff就是定的
    }

    if ( e < 1E-6 )
    {
	return N * (1 - exp(log(CF) / N));
    }
    else
    if ( e < 0.9999 )
    {
	Val0 = N * (1 - exp(log(CF) / N));
	return Val0 + e * (AddErrs(N, 1.0) - Val0);//这里在进行递归调用
    }
    else
    if ( e + 0.5 >= N )
    {
	return 0.67 * (N - e);
    }
    else
    {
        float fenzi;
        fenzi=(
        e + 0.5 + Coeff/2+ sqrt
        ( 
            Coeff * 
                (
                (e + 0.5) * (1 - (e + 0.5)/N) + Coeff/4
                )
        ) 
            );

        printf("fenzi=%f\n",fenzi);
	Pr = (
        e + 0.5 + Coeff/2+ sqrt
        ( 
            Coeff * 
                (
                (e + 0.5) * (1 - (e + 0.5)/N) + Coeff/4
                )
        ) 
            )
             / (N + Coeff);
       printf("Pr=%f\n",Pr);
	return (N * Pr - e);
    }
}




int main()
{

float result=AddErrs(16, 1);
printf("result=%f\n",result);
    exit(0);


}


running method:

gcc -o stats stats.c -lm
./stats

the result is:
Coeff=0.479556
fenzi=2.582031
Pr=0.156681
result=1.506894

你可能感兴趣的:(机器学习算法)