- 【人工智能】Python常用库-PyTorch常用方法教程
IT古董
人工智能机器学习Python人工智能pythonpytorch机器学习
PyTorch是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是PyTorch的详细教程,涵盖从基础到实际应用的使用方法。1.安装与导入1.1安装PyTorch访问PyTorch官方网站,根据系统、Python版本和CUDA支持选择安装命令。常用安装命令:pipinstalltorchtorchvisiontorchaudio1.2导入库importtorchimporttor
- 【人工智能】Python常用库-TensorFlow常用方法教程
IT古董
人工智能机器学习Python人工智能pythontensorflow机器学习
TensorFlow是一个广泛应用的开源深度学习框架,支持多种机器学习任务,如深度学习、神经网络、强化学习等。以下是TensorFlow的详细教程,涵盖基础使用方法和示例代码。1.安装与导入安装TensorFlow:pipinstalltensorflow导入TensorFlow:importtensorflowastfimportnumpyasnp验证安装:print(tf.__version_
- cpu和gpu的区别
sdsadwe
cpucpu
cpu和gpu的区别是cpu是电脑的中央处理器,在电脑中起着控制计算机运行的作用;gpu是一个附属型的处理器,主要处理计算机中与图形计算有关的工作,并将数据更好地呈现在显示器中。组装电脑怎么搭配更合适这些点很重要http://www.adiannao.cn/duCPU,在电脑中起着控制计算机运行的作用,是电脑的中央处理器。GPU是一个附属型的处理器,主要处理计算机中与图形计算有关的工作,并将数据更
- CPU与GPU的区别
dingkm666
基础知识储备cpu与gpu
1.什么是CPU?CPU:中央处理器(英文CentralProcessingUnit)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。2.什么是GPU?GPU:英文全称GraphicProcessingUnit,中文翻译为“图形处理器”,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- cpu和gpu的区别,以及cpu和gpu中核的概念以及四种架构
zhoudeng666
架构c++linuxc语言
1.什么是cpu个人理解cpu就是一个公司里面的技术骨干,但是不参与管理工作的人员,在计算机中cpu主要是用来处理一条条机器指令的,并且cpu的运算速度特别快,所以说周围还有几个秘书,就是给他提供资料或者存储资料的(寄存器),一般一个程序运行的流程就是操作系统从程序对应的pcb中将指令取出,交给cpu进行处理,cpu处理完毕以后将结果写回对应的存储单元(寄存器或者内存)。cpu的具体作用:1.指令
- NLTK命名实体识别(NER)
Mr数据杨
Python自然语言技术NLTK自然语言处理1024程序员节
命名实体识别(NamedEntityRecognition,NER)是自然语言处理(NLP)中的一项核心技术,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织名等。通过对文本的自动化处理,NER能够帮助计算机理解和组织大量的非结构化数据,为信息抽取、搜索引擎优化、数据分析等领域提供强有力的技术支持。NLTK(NaturalLanguageToolkit)是一个广泛使用的Python库,提供
- 详解三种常用标准化:Batch Norm、Layer Norm和RMSNorm
yyytucj
batch开发语言
在深度学习中,标准化技术是提升模型训练速度、稳定性和性能的重要手段。本文将详细介绍三种常用的标准化方法:BatchNormalization(批量标准化)、LayerNormalization(层标准化)和RMSNormalization(RMS标准化),并对其原理、实现和应用场景进行深入分析。一、BatchNormalization1.1BatchNormalization的原理BatchNor
- 华为OD机试 - 内存冷热标记(Python/JS/C/C++ 2024 C卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述现代计算机系统通常存在多级的存储设备,针对海量的wordload
- 桌面在计算机哪个文件夹,windows的桌面文件夹是哪个?
高杉峻
桌面在计算机哪个文件夹
该楼层疑似违规已被系统折叠隐藏此楼查看此楼Windows7的用户文件夹默认所在位置是系统盘(通常是C盘)下的“\Users”目录之内。该文件夹中储存着所有的用户生成文件,比如你保存在“桌面”上的文件(实际上是保存在C:\Users\YourUserName\Desktop目录之中),再比如你保存在“我的文档”里的文件(实际上是保存在C:\Users\joe\Documents目录之中)。你想把用户
- 等保测评过程中通常会遇到哪些常见问题
黑龙江亿林等级保护测评
安全网络web安全django大数据算法数据结构
常见问题1.信息泄露风险信息系统存储、传输和处理的敏感信息可能被非法获取,导致个人隐私泄露或商业秘密泄露。解决方法:加强数据加密措施,确保数据传输和存储的安全性,定期进行安全培训,提高员工的安全意识和应对能力。2.拒绝服务(DoS)攻击风险针对系统资源的攻击可能导致系统或服务暂时或永久不可用。解决方法:增强系统的抗DoS攻击能力,部署有效的流量监控和清洗设备。3.恶意软件风险包括计算机病毒、木马、
- 利用 PyTorch 动态计算图和自动求导机制实现自适应神经网络
drebander
AI编程pytorch神经网络人工智能
在深度学习任务中,不同任务的复杂度千差万别。为了解决复杂任务对模型容量的需求,同时避免简单任务因过度拟合导致的性能下降,我们可以构建一个能够根据任务自动调整网络结构的神经网络。在PyTorch中,动态计算图和自动求导机制为实现这一目标提供了强大的工具。动态网络结构设计PyTorch的动态计算图允许我们根据运行时的输入数据或任务复杂度,动态创建和修改网络结构。动态添加/移除层:可以在训练过程中根据需
- 通义千问 Qwen2-VL-2B:技术架构、核心原理、微调操作与场景应用详解
zhangjiaofa
大模型通义千问大模型多模态模型微调
通义千问Qwen2-VL-2B:技术架构、核心原理、微调操作与场景应用详解引言近年来,多模态大模型在人工智能领域取得了显著进展,尤其是在视觉语言理解(Vision-LanguageUnderstanding,VL)方面。阿里云通义千问团队推出的Qwen2-VL-2B模型,作为Qwen2-VL系列中的轻量级版本,凭借其高效的计算性能和强大的多模态处理能力,成为开源社区和工业界关注的焦点。本文将深入解
- 可解释性:走向透明与可信的人工智能
一位小说男主
人工智能入门深度学习机器学习人工智能神经网络
随着深度学习和机器学习技术的迅速发展,越来越多的行业和领域开始应用这些技术。然而,这些技术的“黑盒”特性也带来了不容忽视的挑战。在许多任务中,尽管这些模型表现出色,取得了相当高的精度,但其决策过程不透明,这对于依赖于机器决策的应用(如金融、医疗、法律等)来说,可能是无法接受的。因此,如何提高模型的可解释性、实现透明和可信的人工智能,成为了当下人工智能领域的重要课题。❤️本文将深入探讨机器学习中的可
- Qwen-VL论文解读
dream_home8407
人工智能
Qwen-VL:用于理解、定位、文本阅读等的通用视觉-语言模型摘要在本文中,我们介绍了Qwen-VL系列,这是一组大规模的视觉-语言模型(LVLMs),旨在感知和理解文本和图像。从Qwen-LM开始,我们通过精心设计的(i)视觉受体,(ii)输入-输出接口,(iii)3阶段训练管道,以及(iv)多语言多模态清洗语料库,赋予其视觉能力。除了传统的图像描述和问答,我们还通过图像-标题-框元组的对齐实现
- 单目测距(yolo-目标检测+标定+深度学习目标检测_测距)
计算机C9硕士_算法工程师
YOLO目标检测深度学习
YOLOv5模型介绍YOLOv5是目前最先进的目标检测算法之一,在多个数据集上取得了优秀的表现。相较于YOLOv4,YOLOv5采用了更深的Backbone网络和更高的分辨率输入图像,以提高检测精度和速度。单目测距实现方法在目标检测的基础上,我们可以通过计算物体在图像中的像素大小来估计其距离。具体方法是,首先确定某个物体的实际尺寸,然后根据该物体在图像中的像素大小计算其距离。这个方法可以应用于各种
- Depth Anything V2:单目深度估计的更强基线
武朵欢Nerissa
DepthAnythingV2:单目深度估计的更强基线项目地址:https://gitcode.com/gh_mirrors/de/Depth-Anything-V2项目介绍DepthAnythingV2是由HKU与TikTok团队合作开发的单目深度估计算法的升级版本。这个框架显著提升了细节处理能力和鲁棒性,相比于基于深度学习的方法,它提供了更快的推理速度、更少的参数量以及更高的深度预测精度。本项
- 深度图转点云——从图像到三维场景
MrybHtml
点云
在计算机视觉领域中,深度图转点云是一项重要的任务,它能够将二维深度图像转换为三维点云表示。点云是一种由点构成的数据结构,可以直观地表示三维场景中的物体形状和空间布局。本文将介绍一种常见的方法,并提供相应的源代码,以实现深度图转点云。深度图是一种灰度图像,其中每个像素值代表了该点距离相机的距离。深度图通常使用激光雷达或者结构光等传感器捕捉得到。而点云则是由一系列的三维点组成,每个点都有其在空间中的坐
- 常用的Windows10命令大全+计算机快捷键
★愿与愁★
笔记cmdwindows
序言:在博客上看见一位大佬利用win命令实现了下拉式关机的方法,不得不收这种酷炫的操作真的是有惊艳到我,于是我心血来潮就在此汇总了一些win10中的cmd命令还有一些电脑便捷化组合键,希望可以在你需要的时候帮助到你们.目录以下为Windows10命令键盘快捷化组合键以下为Windows10命令1.calc:启动计算器2.appwiz.cpl:程序和功能3.certmgr.msc:证书管理实用程序4
- OpenAI的编程语言和框架,给程序员带来了帮助有哪些
API技术大佬Anzexi58
OpenAI人工智能人工智能深度学习
OpenAI是一个人工智能开发公司,成立于2015年,总部位于美国旧金山。这家公司致力于研究和开发先进的人工智能技术,旨在将这些技术应用到解决全球一些最棘手的问题上。OpenAI以其卓越的技术和实验室出品的groundbreakingAIpapers而闻名。OpenAI的研究涉及深度学习、自然语言处理、视觉感知、强化学习等多个领域,并已在各种应用中取得了令人瞩目的成果。例如,在机器人领域,Open
- Docker最新超详细教程——入门简介
金鳞踏雨
Dockerdocker容器运维命令
Docker最新超详细教程——入门简介微服务中存在的痛点什么是Docker?Docker如何解决依赖兼容问题?Docker如何解决不同系统环境问题?(生产环境差异)操作系统结构应用于计算机交互的流程Docker与虚拟机有什么区别?Docker架构镜像和容器DockerHub如何用Docker?下一节:Docker的安装与部署Docker最新超详细教程——入门简介微服务中存在的痛点之前学习了Spri
- DeepSeek:突破传统的AI算法与下载排行分析
smart_ljh
行业搜索人工智能AI
DeepSeek的AI算法突破DeepSeek相较于OpenAI以及其它平台的性能对比DeepSeek的下载排行分析(截止2025/1/28AI人工智能相关DeepSeek甚至一度被推上了搜索)未来发展趋势总结在人工智能技术飞速发展的当下,搜索引擎市场也迎来了新的变革。DeepSeek,作为一款基于深度学习技术和大数据算法的搜索引擎,以其独特的优势在国内外市场上引起了广泛关注。下面介绍一下针对De
- Python数据可视化 Pyecharts 制作 Sankey 桑基图
Mr数据杨
Python数据可视化python数据可视化pyecharts数据分析
桑基图作为一种强大的数据可视化工具,常用于展现不同节点之间的流动关系及其数量分布。其通过直观的连线展示,帮助用户理解复杂系统中各个部分的连接和交互。Python的pyecharts库提供了Sankey类,支持用户灵活创建各种桑基图,不仅能够展示流动数据,还能根据节点层级及连线样式进行高度定制,使得桑基图在信息传达和视觉表现上更具表现力。文章目录Sankey:桑基图Demo总结Sankey:桑基图桑
- docker——入门介绍、组件介绍、安装与启动、镜像相关命令、容器相关命令、应用部署
山上有个车
dockerdocker容器运维
文章目录一、入门介绍什么是虚拟化名词解释什么是Dockerdocker的优点容器与虚拟机比较二、组件介绍三、安装与启动安装docker所需依赖换yum源安装docker查看docker版本启动docker关闭dockerdocker开机启动查看docker详细信息四、镜像相关命令镜像加速五、容器相关命令六、应用部署部署mysql部署redis运行nginx一、入门介绍什么是虚拟化在计算机中,虚拟化
- 色度采样(4:4:4、4:2:2、4:2:0、4:1:1)详解
又吹风_Bassy
视频压缩技术图像处理色度采样YUV颜色空间视频编码标准
色度采样(4:4:4、4:2:2、4:2:0、4:1:1)详解色度采样概述色度采样(ChromaSubsampling)是一种在图像和视频处理中,通过减少色度分量(U、V)的采样量来压缩数据的技术。它利用了人眼对亮度(Luma,Y)比色度(Chroma,U/V)更加敏感的特性,从而在不明显影响视觉效果的前提下,显著降低数据量。在YUV颜色空间中,Y表示亮度,U和V表示色度分量。通过减少U和V的采样
- 计算机毕业设计ssm旅游景点推荐系统02d989(附源码)新手必备
毕设程序源码
课程设计
项目运行环境配置:Jdk1.8+Tomcat7.0+Mysql+HBuilderX(Webstorm也行)+Eclispe(IntelliJIDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:ssm+mybatis+Maven+mysql5.7或8.0等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这个平台上运行的。其他版本理论
- 【Linux】---Samba服务
Jackson~Y
linux运维服务器
Samba服务1.SMB协议:SMB(ServerMessageBlock)协议是微软和英特尔联合制定的协议,主要作为微软网络的通信协议(可以将它看作局域网中的文件和打印共享协议)。SMB协议工作于会话层表示层和一小部分的应用层,它使用了NetBIOS的应用程序接口(API)。另外,它是一个开放性的协议,允许协议扩展(这使得它变得庞大而复杂)。为了让Windows和Linux计算机之间能相互访问,
- linux监听tcp端口数据包,linux tcpdump抓包
weixin_39615741
linux监听tcp端口数据包
8种机械键盘轴体对比本人程序员,要买一个写代码的键盘,请问红轴和茶轴怎么选?tcpdump是在命令行下运行的常用数据包分析器。它允许用户显示通过计算机所连接的网络传输或接收的TCP/IP和其他数据包。根据BSD许可分发,tcpdump是免费软件。tcpdump适用于大多数类Unix操作系统:Linux,Solaris,BSD,macOS,HP-UX,Android和AIX等。在这些系统中,tcpd
- SSH隧道连接(基于linux)
小熊同学哦
网络安全sshlinux运维
引言SecureShell(SSH)是一种网络协议,用于在不安全的网络中为网络服务提供安全的传输。SSH协议主要用来进行远程登录,管理服务器,传输文件等。本文将详细介绍SSH的工作原理、配置方法以及常见问题的解决方法,帮助读者更好地理解和使用SSH。1.SSH的基本概念1.1什么是SSH?SSH(SecureShell)是一种加密的网络协议,用于安全地连接到远程计算机。它提供了安全的通信通道,可以
- 医学顶会 MICCAI‘24 | LKM-UNet: 大型内核视觉 Mamba UNet 用于医学图像分割
小白学视觉
医学图像处理论文解读MICCAI深度学习医学图像顶会医学图像处理论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:LKM-UNet:LargeKernelVisionMambaUNetforMedicalImageSegmentationLKM-UNet:大型内核视觉MambaUNet用于医学图像分割作者:JinhongWang,JintaiChen,DannyChen,JianWu源码链接:
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》