本文主要介绍数据结构中常见的八大排序算法,冒泡排序、快速排序、直接插入排序、希尔排序、简单选择排序、堆排序、归并排序和基数排序。
注:算法是否稳定并不能衡量一个算法的优劣,排序算法主要包含2种操作:比较和移动,但并不是所有的排序都基于比较操作,比如基数排序。
下图为排序算法体系结构图:
各大排序算法的时间复杂度、空间复杂度及稳定性见下表:
将待排序的无序数列看成是一个仅含有一个元素的有序数列和一个无序数列,将无序数列中的元素逐次插入到有序数列中,从而获得最终的有序数列。
详细描述如下:
复杂度分析:
第1个元素,需要进行 0 次比较;
第2个元素,需要进行 1 次比较;
第3个元素,需要进行 2 次比较;
第n个元素,需要进行n-1次比较;
所以插入排序的时间复杂度是 O ( n 2 ) O(n^2) O(n2),空间复杂度是 O ( 1 ) O(1) O(1),稳定。
//直接插入法一
void InsertSort1(int a[], int n)
{
int i, j;
for(i=1; i<n; i++)
if(a[i] < a[i-1])
{
int temp = a[i]; //保存要比较的值
for(j=i-1; j>=0 && a[j]>temp; j--) //从后向前查找待插入位置
a[j+1] = a[j]; //挪位
a[j+1] = temp; //复制到插入位置
}
}
//直接插入法二:用数据交换代替法一的数据后移(比较对象只考虑两个元素)
void InsertSort2(int a[], int n)
{
for(int i=1; i<n; i++)
for(int j=i-1; j>=0 && a[j]>a[j+1]; j--)
Swap(a[j], a[j+1]);
}
void Swap(int a,int b){
int temp;
temp=a;
a=b;
b=temp;
}
仅适用于顺序存储的线性表
直接插入排序是边比较,边移动元素;
折半插入排序是先折半查找到插入位置,再统一移动元素
void ZhebanInsertSort(int a[],int n){
int i,j,low,high,mid;
for(i=1;i<n;i++){
temp=a[i];
low=1,high=i; //设置折半查找范围
while(low<=high){
mid=(low+high)/2;
if(a[mid]>temp)
high=mid-1; //查找左半部分
else
low=mid+1; //查找右半部分
}
for(j=i;j>=high+1;--j)
a[j+1]=a[j]; //统一后移元素,空出插入位置
a[high+1]=temp; //插入
}
}
希尔排序是第一个突破 O ( n 2 ) O(n^2) O(n2)的排序算法,是简单插入排序的优化,实质是分组的简单插入排序。它与插入排序的不同之处在于,它会优先比较距离较远的元素(每次取相隔一定间隔gap的元素作为一组,在组内执行简单插入排序)。希尔排序又叫缩小增量排序(不断减小间隔gap的数组,直到gap=1)。
时间复杂度为 O ( n 1 + e ) O(n^{1+e}) O(n1+e)(其中0
动态实例
//希尔排序法一
void shellSort1(int a[],int n){
int i,j,gap,temp;
for(gap = n/2;gap>0;gap/=2){
for(i=gap;i<n;i+=gap){
temp = a[i];
for(j = i-gap;j>=0&&a[j]>temp;j-=gap){
a[j+gap] = a[j];
}
a[j+gap] = temp;
}
}
}
//希尔排序法二,和上面的直接插入排序类似,用数据交换代替法一的数据后移(比较对象只考虑两个元素)
void ShellSort2(int a[], int n)
{
int i, j, gap;
//分组
for(gap=n/2; gap>0; gap/=2)
//直接插入排序
for(i=gap; i<n; i++)
for(j=i-gap; j>=0 && a[j]>a[j+gap]; j-=gap)
Swap(a[j], a[j+gap]);
}
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。每一趟排序后的效果都是讲没有沉下去的元素给沉下去。
复杂度分析
第一次排序的比较次数:$ n-1$ n个元素相邻两两比较,需要n-1次比较;
第二次排序的比较次数:$ n-2$ 第一次排序后最后一个元素可以确定为最大值,不再需要参与第二次排序;
第三次排序的比较次数: n − 3 n-3 n−3 同理,最后两个数已经确定,不再需要参与排序;
第 n-1 次排序的比较次数: 1 1 1 ;
所以冒泡排序的时间复杂度是 O ( n 2 ) O(n^2) O(n2)。 空间复杂度是 O ( 1 ) O(1) O(1),稳定 。
//冒泡排序
void BubbleSort(int a[], int n)
{
int i, j;
for(i=0; i<n; i++){
bool flag=false; //表示本趟冒泡是否发生交换的标志
for(j=1; j<n-i; j++){ //j的起始位置为1,终止位置为n-i
if(a[j]<a[j-1]){
Swap(a[j-1], a[j]);
flag=true;
}
}
if(flag==false) //未交换,说明已经有序,停止排序
return;
}
}
鸡尾酒排序与冒泡排序的不同处在于排序时是以首尾双向在序列中进行排序。
鸡尾酒排序的优点是能够在特定条件下(如集合中大部分元素有序),减少排序的回合数。
实现鸡尾酒排序需要分别定义一个从最左边开始的index_left和从最右边开始的index_reight,当两个index相等的时候循环结束。
//鸡尾酒排序
void CocktailSort(int a[], int n){
int left = 0, right=n-1;
while(left<right){
for(int i=left;i<right-1;i++){ //从前往后排
if(a[i]>a[i+1]){
Swap(a[i],a[i+1]);
}
right-=1;
for(int j=right;j>left;j--){ //从后往前排
if(a[j]<a[j-1]){
Swap(a[j],a[j-1]);
}
}
left+=1;
}
}
}
快速排序是目前所有内部排序算法中平均性能最优的排序算法。
快速排序算法的基本思想为分治思想。
复杂度分析:
时间复杂度为 O ( n l o g 2 n ) O(nlog_{2}^{n}) O(nlog2n),空间复杂度为 O ( l o g 2 n ) O(log_2^n) O(log2n),不稳定。
下面是一个我手写的详细分析实例:
//快速排序
void QuickSort(int a[],int left,int right){
if(left<right){
int i=left,j=right;
int base=a[left]; //基准
while(i<j){
while(i<j&&a[j]>=base) //从右往左找小于base的元素
j--;
if(i<j)
a[i++]=a[j];
while(i<j&&a[i]<base) //从左往右找大于base的值
i++;
if(i<j)
a[j--]=a[i];
}
a[i]=base; //将基准base填入最后的坑中
QuickSort(a,left,i-1); //递归调用,分治
QuickSort(a,i+1,right);
}
}
注意:如果基准不是选第一个数,可以用Swap()函数将基准调整至第一个位置,再执行上述程序。
总结:本文主要介绍了2大类排序算法:插入排序(直接插入、希尔排序)和交换排序(冒泡排序、快速排序)。在下一篇博文中,我将介绍剩下的4种排序(简单选择排序、堆排序、归并排序、基数排序),并对所有的排序算法做一个比较。