spark学习13之RDD的partitions数目获取

更多代码请见:https://github.com/xubo245/SparkLearning
spark1.5.2

1解释
获取RDD的partitions数目和index信息
疑问:为什么纯文本的partitions数目与HDFS的block数目一样,但是.gz的压缩文件的partitions数目却为1?

2.代码:

sc.textFile("/xubo/GRCH38Sub/GRCH38L12566578.fna").partitions.length
sc.textFile("/xubo/GRCH38Sub/GRCH38L12566578.fna.bwt").partitions.foreach(each=>println(each.index))

spark1.6中可以直接获取:

 @Since("1.6.0")
  final def getNumPartitions: Int = partitions.length

3.结果:
(1)第一个文件

partitions数:

scala> sc.textFile("/xubo/GRCH38Sub/GRCH38L12566578.fna").partitions.length
res2: Int = 7

详细信息:

scala> sc.textFile("/xubo/GRCH38Sub/GRCH38L12566578.fna.bwt").partitions.foreach(each=>println(each.index))
0
1
2
3
4
5
6

(2)第二个文件:

scala> sc.textFile(file).partitions.foreach(each=>println(each.index))
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

(3)第三个文件:
但是gz文件: 大小差不多,但是partition却为1

scala> sc.textFile("/xubo/data/GRCH38/GCA_000001405.15_GRCh38_full_analysis_set.fna.bwa_index.tar.gz").partitions.length
res5: Int = 1

index:

scala> sc.textFile("/xubo/data/GRCH38/GCA_000001405.15_GRCh38_full_analysis_set.fna.bwa_index.tar.gz").partitions.foreach(each=>println(each.index))
0

spark学习13之RDD的partitions数目获取_第1张图片
spark学习13之RDD的partitions数目获取_第2张图片
spark学习13之RDD的partitions数目获取_第3张图片

(4)大文件(3G),同样的:

scala> val file="/xubo/data/GRCH38/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_full_plus_hs38d1_analysis_set.fna.bowtie_index.tar.gz"
file: String = /xubo/data/GRCH38/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_full_plus_hs38d1_analysis_set.fna.bowtie_index.tar.gz

scala> sc.textFile(file).partitions.foreach(each=>println(each.index))
0

这里写图片描述
spark学习13之RDD的partitions数目获取_第4张图片
spark学习13之RDD的partitions数目获取_第5张图片

4.本来想在RDD加一个获取partitions数量的函数或者属性,但是已看代码,1.6中有人加了:


  /**
   * Returns the number of partitions of this RDD.
   */
  @Since("1.6.0")
  final def getNumPartitions: Int = partitions.length

目前不确定为什么blocks数一样,生成的partitions数不一样的原因,所以有待学习

参考
【1】http://spark.apache.org/docs/1.5.2/mllib-guide.html
【2】http://spark.apache.org/docs/1.5.2/mllib-collaborative-filtering.html#collaborative-filtering
【3】https://github.com/xubo245/SparkLearning

你可能感兴趣的:(spark)