- 【人工智能】Python常用库-TensorFlow常用方法教程
IT古董
人工智能机器学习Python人工智能pythontensorflow机器学习
TensorFlow是一个广泛应用的开源深度学习框架,支持多种机器学习任务,如深度学习、神经网络、强化学习等。以下是TensorFlow的详细教程,涵盖基础使用方法和示例代码。1.安装与导入安装TensorFlow:pipinstalltensorflow导入TensorFlow:importtensorflowastfimportnumpyasnp验证安装:print(tf.__version_
- Tensorflow入门——训练结果的保存与加载
weixin_34087301
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>训练完成以后我们就可以直接使用训练好的模板进行预测了但是每次在预测之前都要进行训练,不是一个常规操作,毕竟有些复杂的模型需要训练好几天甚至更久所以将训练好的模型进行保存,当有需要的时候重新加载这个模型进行预测或者继续训练,这才是一个常规操作我们依然使用最简单的例子进行说明,这里沿用Tensorflow入门——实现最简单的线性回归模型的预测这个例
- tensorflow1.x 基础案例3
慢慢学习python
tensorflow框架学习tensorflow学习python
.为什么还有很多人都选择使用TensorFlow1.x兼容性问题:TensorFlow1.x在一些旧项目中已经得到了广泛应用,这些项目可能依赖于1.x版本的特定API或行为。升级到2.x可能需要大量的代码修改和测试工作,对于一些已经稳定运行的项目,维护者可能不愿意承担这种风险。性能要求:在某些情况下,TensorFlow1.x可能提供了更适合特定任务的性能优化。例如,对于需要极致计算性能的应用,1
- 深度图转点云——从图像到三维场景
MrybHtml
点云
在计算机视觉领域中,深度图转点云是一项重要的任务,它能够将二维深度图像转换为三维点云表示。点云是一种由点构成的数据结构,可以直观地表示三维场景中的物体形状和空间布局。本文将介绍一种常见的方法,并提供相应的源代码,以实现深度图转点云。深度图是一种灰度图像,其中每个像素值代表了该点距离相机的距离。深度图通常使用激光雷达或者结构光等传感器捕捉得到。而点云则是由一系列的三维点组成,每个点都有其在空间中的坐
- python3+TensorFlow 2.x(四)反向传播
刀客123
python学习tensorflow人工智能python
目录反向传播算法反向传播算法基本步骤:反向中的参数变化总结反向传播算法反向传播算法(Backpropagation)是训练人工神经网络时使用的一个重要算法,它是通过计算梯度并优化神经网络的权重来最小化误差。反向传播算法的核心是基于链式法则的梯度下降优化方法,通过计算误差对每个权重的偏导数来更新网络中的参数。反向传播算法基本步骤:前向传播:将输入数据传递通过神经网络的各层,计算每一层的输出。计算损失
- 【计算机视觉】图像滤波
油泼辣子多加
计算机视觉计算机视觉人工智能python神经网络
1.图像滤波定义图像滤波是一种非常重要的图像处理技术,图像平滑、边缘检测、边缘增强、去除噪声都属于图像滤波,图像滤波是一种基于邻域的算法。通过图像滤波,可以实现图像平滑、边缘检测;图像平滑也叫图像模糊,用以去除图像中的噪声、伪影等,它是图像处理和计算机视觉的常见步骤。函数模糊类型特点使用场景cv.blur均值模糊简单快速,所有像素权重相等基础平滑和降噪cv.GaussianBlur高斯模糊中心权重
- AI软件外包需要注意什么 外包开发AI软件的关键因素是什么 如何选择AI外包开发语言
北京动点飞扬软件
AI外包
1.定义目标与需求首先,要明确你希望AI智能体做什么。是自动化任务、数据分析、自然语言处理,还是其他功能?明确目标可以帮助你选择合适的技术和方法。2.选择开发平台与工具开发AI智能体的软件时,你需要选择适合的编程语言、框架和工具。例如:编程语言:Python是最常用的语言,因为它有强大的AI/ML库,如TensorFlow、PyTorch、scikit-learn等。开发平台:你可以使用本地环境、
- SalFAU-Net:显著性目标检测的显著性融合注意U-Net
明初啥都能学会
目标检测人工智能计算机视觉
SalFAU-Net:显著性目标检测的显著性融合注意U-Net摘要IntroductionRelatedWorksSalFAU-Net:SaliencyFusionAttentionU-NetforSalientObjectDetection摘要显著目标检测(SOD)在计算机视觉中仍然是一个重要的任务,其应用范围从图像分割到自动驾驶。基于全卷积网络(FCN)的方法在过去几十年里在视觉显著性检测方面
- ultralytics 是什么?
博刻
AI学习笔记python
ultralytics是一个用于计算机视觉任务的Python库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现YOLO(YouOnlyLookOnce)系列模型,特别是最新的YOLOv8。1.YOLO是什么?YOLO是一种流行的目标检测算法,以其速度快和精度高而闻名。YOLO的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。YOLOv8是YOL
- 从简单到深刻的认知发展
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知发展,人工智能,深度学习,神经网络,机器学习,自然语言处理,计算机视觉1.背景介绍认知发展是人类从简单到复杂的思维方式演进的过程,它涉及感知、记忆、语言、推理和决策等多个方面。随着人工智能技术的飞速发展,我们开始尝试用计算机模拟人类的认知能力,构建能够学习、理解和解决复杂问题的智能系统。从早期的符号逻辑到如今的深度学习,人工智能的发展经历了多个阶段。早期的人工智能研究主要集中在规则和逻辑推理上
- 使用onnxruntime-web 运行yolov8-nano推理
CHEN_RUI_2200
机器学习YOLO
ONNX(OpenNeuralNetworkExchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8识别预览图片:1.跨平台兼容性ONNX是一种开放的格式,可以在不同的深度学习框架之间共享模型,如PyTorch、TensorFlow、MXNet和Caffe2。这使得用户可以在一个框架中训练模
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- 使用Python调用OpenCV中的solvePnP函数
WzisTypescript
pythonopencv开发语言OpenCV
OpenCV是一个广泛使用的计算机视觉库,它提供了许多用于处理图像和视频的功能。其中一个重要的功能是解决透视投影问题,也就是通过已知的3D点和对应的2D图像点来计算相机的位姿。在OpenCV中,solvePnP函数就是用于解决这个问题的。solvePnP函数使用了一种称为Perspective-n-Point(PnP)问题的算法,它可以估计相机的旋转和平移向量,从而确定相机在3D空间中的位置。这对
- cv python_python里面cv是什么意思
weixin_40004659
cvpython
OpenCV(OpenSourceComputerVisionLibrary)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV由一系列C函数和C++类构成,它有C,C++,Python和java接口,当前SDK(SoftwareDevelopmentKit软件
- 探索人工智能在计算机视觉领域的创新应用与挑战
戒了9
人工智能学习方法
一、引言1.1研究背景与意义在科技飞速发展的当下,人工智能(ArtificialIntelligence,AI)已然成为引领新一轮科技革命和产业变革的重要驱动力。作为AI领域的关键分支,计算机视觉(ComputerVision,CV)致力于让计算机具备像人类一样理解和解析图像、视频等视觉信息的能力,近年来取得了令人瞩目的进展。二者的深度融合,更是为众多领域带来了前所未有的变革与机遇。从技术发展历程
- 【机器学习】 自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
加德霍克
tensorflow逻辑回归人工智能python作业
一、使用tensorflow框架实现逻辑回归1.数据部分:首先自定义了一个简单的数据集,特征X是100个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。tensorflow框架不需要numpy数组转换为相应的张量,可以直接在模型中使用数据集。2.模型定义部分:方案1:model=tf.keras.Sequential([tf.keras.layers.Dense(1,input_sh
- Install TensorFlow
不放糖的苦咖啡
深度学习与计算机视觉windows64bitpython
安装TensorFlowAnaconda初步学习0.下载Anaconda安装包Anaconda官方下载地址下载的是Anaconda4.3.0ForWindows64bit(内置python3.6)下载好了就安装,一直下一步。1.检查Anaconda是否成功安装:conda–version如果成功的话会显示conda4.3.82.检测目前安装了那些环境:condainfo–envs会显示出现的有关已
- Python magenta库:一款人工智能生成音乐与艺术的创新工具
程序员喵哥
python人工智能开发语言
更多Python学习内容:ipengtao.com随着人工智能在创意领域的不断进步,音乐和艺术生成正成为一种新的可能性。Magenta是由Google推出的一个开源项目,它结合了深度学习与艺术创作,为开发者提供了一系列强大的工具,帮助他们创作音乐、绘画等艺术作品。基于TensorFlow,Magenta不仅适用于研究人员,也适合开发者和艺术家,提供了易于上手的API和丰富的模型。安装在使用Mage
- 人工智能技术的应用前景及未来发展
键盘上的蚂蚁-
人工智能生活
引言人工智能(AI)作为21世纪最具创新性和革命性的技术之一,正在全球范围内深刻地改变着我们的生产、工作和生活方式。随着深度学习、强化学习、自然语言处理(NLP)、计算机视觉(CV)等技术的飞速进展,AI不再仅仅是学术研究中的一个热点,而是渗透到各个行业,成为推动创新、优化生产和提升效率的核心力量。对于开发者来说,理解和掌握AI技术不仅是提升个人技能的途径,更是应对未来技术变革、抓住职业机遇的关键
- opencv2.4中SVD分解的几种调用方法
weixin_34342992
人工智能matlabc#
原帖地址:http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解。奇异值分解(singularvaluedecomposition,SVD)是一种可靠地正交矩阵分解法,但它比QR分解法要花上近十倍的计算时间。在matlab中,[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵
- Python从0到100(四十):Web开发简介-从前端到后端(文末免费送书)
是Dream呀
python前端开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 基于OpenCV的答题卡识别系统(附全部源码)
Dong__ZW
opencv人工智能计算机视觉
本项目基于Python和OpenCV图像处理库,在Windows平台下开发了一个答题卡识别系统。系统运用精巧的计算机视觉算法,实现了批量识别答题卡并将信息导出至Excel表格的功能。这一解决方案使得答题卡的判卷过程变得轻便、高效且准确。首先,我们以Python语言作为开发基础,结合OpenCV图像处理库,为系统提供了强大的图像处理和分析能力。这使得我们能够在图像中准确地定位答题卡,检测填涂区域,以
- 计算机视觉目标检测-DETR网络
next_travel
计算机视觉目标检测人工智能
目录摘要abstractDETR目标检测网络详解二分图匹配和损失函数DETR总结总结摘要DETR(DEtectionTRansformer)是由FacebookAI提出的一种基于Transformer架构的端到端目标检测方法。它通过将目标检测建模为集合预测问题,摒弃了锚框设计和非极大值抑制(NMS)等复杂后处理步骤。DETR使用卷积神经网络提取图像特征,并将其通过位置编码转换为输入序列,送入Tra
- YOLO到XML:轻松转换标注文件,助力计算机视觉项目
m0_69670384
YOLOxml计算机视觉
YOLO到XML:轻松转换标注文件,助力计算机视觉项目在计算机视觉项目中,数据标注是至关重要的一步。不同的算法和框架可能需要不同格式的标注文件。YOLO(YouOnlyLookOnce)格式因其简洁和高效,在目标检测任务中备受欢迎。然而,有时我们可能需要将YOLO格式的标注文件转换为XML格式,以便与其他工具或框架兼容。本文将详细介绍如何将YOLO格式的标注文件批量转换为XML格式,助力你的计算机
- Python从0到100(六十一):机器学习实战-实现客户细分
是Dream呀
python机器学习开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 请问Python怎么安装vlfeat?
cda2024
python开发语言
在当今数据驱动的时代,图像处理和计算机视觉成为了许多前沿应用的核心技术之一。作为一门强大的编程语言,Python在这些领域中扮演着极其重要的角色。而vlfeat是一个广泛使用的计算机视觉库,它提供了许多经典的计算机视觉算法实现,如SIFT、HOG等。本文将详细介绍如何在Python中安装和使用vlfeat,帮助你在项目中高效地集成这些强大的工具。什么是vlfeat?vlfeat是一个开源的计算机视
- 双目视觉之获取三维坐标(立体校正、Q矩阵与三角测量原理)
乐平要加油啊
YOLO+双目视觉计算机视觉opencv
前言双目视觉是一种模拟人类立体视觉的计算机视觉技术,它通过两个相机从不同的角度拍摄同一个场景,然后利用三角测量原理,计算出场景中物体的三维坐标信息。这种技术在机器人导航、自动驾驶、物体跟踪、三维重建等领域有广泛的应用。获取三维坐标是双目视觉的核心任务之一。通过对左右相机拍摄的图像进行特征匹配和视差计算,我们可以得到场景中每个像素点的视差值。视差值表示了同一个物体在左右图像中的位置差异,它与物体距离
- 【安装cudnn】
Eternal-Student
linuxlinux
官网下载并安装如果打算使用深度学习框架,如TensorFlow或PyTorch,并且需要GPU加速,可能还需要安装NVIDIA的cuDNN库,它是一个GPU加速的深度神经网络库。officialweb:https://developer.nvidia.com/cudnn下载具体:cuDNN9.5.0Downloads历史版本下载:https://developer.nvidia.com/rdp/c
- TensorFlow 的基本概念和使用场景
秃头小饼干
tensorflow人工智能python
一、基本概念(一)张量(Tensor)张量是TensorFlow中最基本的数据结构,它可以看作是多维数组或列表。零阶张量表示标量(单个数字),一阶张量表示向量(一维数组),二阶张量表示矩阵(二维数组),而三阶及以上的张量则是更高维度的数组。例如,在图像识别任务中,一张彩色图像可以表示为一个三阶张量,三个维度分别对应图像的高度、宽度和颜色通道(红、绿、蓝)。张量是计算图中数据流动的载体,各种操作都是
- 计算机视觉 ---图像读取与显示(OpenCV与Matplotlib)
两千连弹
计算机视觉计算机视觉opencvmatplotlib
前言本文分别介绍了使用OpenCV和Matplotlib进行图像读取与显示的方法,如cv2.imread()、cv2.imshow()、plt.imread()、plt.imshow()等,并提及了使用OpenCV时的注意事项。OpenCV与Matplotlib图像读取与显示的差异图像读取:OpenCV:使用cv2.imread()函数读取图像,默认读取的图像格式是BGR(蓝绿红)。Matplot
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st