- 基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
深度学习乐园
深度学习实战项目迁移学习分类人工智能
完整源码项目包获取→点击文章末尾名片!番石榴病害数据集背景描述番石榴(Psidiumguajava)是南亚的主要作物,尤其是在孟加拉国。它富含维生素C和纤维,支持区域经济和营养。不幸的是,番石榴生产受到降低产量的疾病的威胁。该数据集旨在帮助开发用于番石榴果实早期病害检测的机器学习模型,帮助保护收成并减少经济损失。数据说明该数据集包括473张番石榴果实的注释图像,分为三类。图像经过预处理步骤,例如钝
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 使用预训练权重在YOLO模型上训练新数据集的完整指南
马里马里奥-
YOLO目标跟踪人工智能
使用预训练权重在YOLO模型上训练新数据集的完整指南引言在目标检测领域,迁移学习已成为提升模型性能的关键技术。本文将详细介绍如何利用预训练权重在YOLO(YouOnlyLookOnce)框架上训练自定义数据集,帮助您节省训练时间并提高检测精度。为什么使用预训练权重?加速收敛:预训练模型已学习通用特征,训练时间可缩短30%−70%30\%-70\%30%−70%小样本适配:在数据量有限时(n<100
- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- 【图像处理入门】11. 深度学习初探:从CNN到GAN的视觉智能之旅
小米玄戒Andrew
图像处理:从入门到专家深度学习图像处理cnn计算机视觉CVGAN
摘要深度学习为图像处理注入了革命性动力。本文将系统讲解卷积神经网络(CNN)的核心原理,通过PyTorch实现图像分类实战;深入解析迁移学习的高效应用策略,利用预训练模型提升自定义任务性能;最后揭开生成对抗网络(GAN)的神秘面纱,展示图像生成与增强的前沿技术。结合代码案例与可视化分析,帮助读者跨越传统算法与深度学习的技术鸿沟。一、卷积神经网络(CNN)基础与实战1.CNN的核心组件与工作原理1.
- 深度学习——迁移学习(Transfer Learning)
E-An居士
深度学习迁移学习人工智能
文章目录一、什么是迁移学习?二、为什么需要迁移学习?三、迁移学习的核心思想四、迁移学习的常见方法1.基于特征的迁移(Feature-basedTransfer)2.基于模型的迁移(Model-basedTransfer)3.基于关系的迁移(Relation-basedTransfer)五、迁移学习在计算机视觉中的应用六、迁移学习在自然语言处理中的应用七、迁移学习的优势与挑战1.优势2.挑战八、实践
- ChatGPT引领的AI面试攻略系列:AI全栈工程师篇
梦想的理由
深度学习chatgpt人工智能面试
系列文章目录AI全栈工程师(本文)文章目录系列文章目录一、前言二、面试题1.基础理论与数据处理2.机器学习3.深度学习4.大模型与迁移学习5.计算机视觉6.自然语言处理(NLP)7.多模态学习8.AI生成内容(AIGC)9.编程语言与工具10.模型评估与优化11.系统部署与维护12.其他前沿技术13.算法与数据结构14.软件工程15.项目管理与团队协作16.伦理和法律17.行业应用18.最新研究与
- 动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
IT猿手
动态多目标优化MATLAB动态多目标算法迁移学习matlab动态多目标进化算法动态多目标优化算法人工智能机器学习
一、Tr-NSGA-II介绍基于迁移学习的动态多目标遗传算法(TransferLearningbasedDynamicMultiobjectivenon-dominatedsortinggeneticalgorithmII,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。工作原理迁移学习的应用:Tr-NSGA-II利用迁移学
- 【大模型】大模型微调(上)
油泼辣子多加
大模型实战深度学习机器学习人工智能
一、概念与背景微调(Fine-tuning)是一种迁移学习的方法,通过在已有的预训练模型基础上,利用目标任务的少量标注数据对模型进行二次训练,使其更好地适应特定任务的需求。预训练阶段模型通常使用大规模通用语料(如维基百科、新闻语料)进行无监督或自监督训练,学习通用的语言表示;微调阶段则使用特定任务数据进行有监督学习,实现从通用到专用的知识迁移。预训练(Pre-training):在大规模无标签语料
- 多语言手写识别中的跨语言迁移学习:Manus AI 的预训练范式
观熵
ManusAI与多语言手写识别人工智能迁移学习机器学习Mauns
多语言手写识别中的跨语言迁移学习:ManusAI的预训练范式关键词:跨语言迁移学习、手写识别、预训练模型、表征共享、语言适配层、低资源语种、参数共享、微调策略摘要:面对多语种手写识别场景中语言资源分布严重不均的现状,ManusAI构建了一套以跨语言迁移为核心的预训练范式,通过在高资源语种上预训练共享视觉-语言编码器,并采用轻量级语言适配模块实现低资源语种的快速泛化。本文系统解析ManusAI如何在
- AIGC模型泛化能力:文心一言的多场景适应
AI原生应用开发
AI原生应用开发AIGC文心一言ai
AIGC模型泛化能力:文心一言的多场景适应关键词:AIGC、泛化能力、文心一言、多场景适应、迁移学习、元学习、领域适配摘要:本文深入解析百度文心一言在多场景下的泛化能力构建技术,从核心概念、算法原理、数学模型到实战应用展开分析。通过揭示文心一言的分层适配架构、动态知识融合机制及多模态协同策略,探讨其如何突破单一场景限制,实现内容生成、智能交互、跨领域任务的高效迁移。结合具体代码案例和数学推导,展示
- 第23篇:AI技术实战:基于深度学习的图像识别与分类
CarlowZJ
AI+Python人工智能深度学习分类
目录一、深度学习在图像识别中的应用(一)卷积神经网络(CNN)的关键组件(二)预训练模型迁移学习二、代码示例(一)使用TensorFlow和Keras实现CNN进行图像分类1.数据准备与预处理2.构建CNN模型3.模型训练与评估(二)使用预训练模型进行迁移学习1.使用ResNet-50预训练模型2.微调预训练模型三、应用场景(一)安防监控(二)医疗影像诊断(三)智能零售(四)工业制造四、注意事项(
- 一篇文章理解Source-Free Domain Adaptation(SFDA)
2501_92336788
迁移学习
这篇文章将从TransferLearning→DomainAdaptation→UnsupervisedDomainAdaptation→Source-FreeDomainAdaptation的顺序进行讲解一、迁移学习(TransferLearning):解决“知识搬家”的问题学术视角:迁移学习的目标是:将一个领域中学到的知识迁移到另一个不同但相关的领域中。给定:源域(Sourcedomain)D
- 迁移学习解析
劭清
深度学习迁移学习人工智能机器学习
一、迁移学习的核心价值1.1定义与范式演进迁移学习(TransferLearning)是通过将源领域的知识迁移到目标领域,提升目标领域模型性能的机器学习范式。其演进路径为:传统机器学习深度学习迁移学习元学习/领域自适应1.2核心优势对比方法数据需求训练成本适用场景传统训练大量标注数据高数据充足场景迁移学习少量标注数据低数据稀缺领域从头训练海量标注数据极高研究级场景1.3应用场景分析跨领域应用:自然
- AIGC领域Stable Diffusion的模型微调方法与实践
AI大模型应用工坊
AI大模型开发实战AIGCstablediffusionai
AIGC领域StableDiffusion的模型微调方法与实践关键词:StableDiffusion、模型微调、AIGC、深度学习、生成对抗网络、文本到图像生成、迁移学习摘要:本文系统解析StableDiffusion模型微调的核心技术体系,从基础原理到工程实践展开深度探讨。首先剖析StableDiffusion的核心架构与微调理论基础,分类讲解全量微调、参数高效微调(LoRA/QLoRA)、特征
- Transformer大模型实战 针对下游任务进行微调
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
Transformer,微调,下游任务,自然语言处理,预训练模型,迁移学习,计算机视觉1.背景介绍近年来,深度学习在人工智能领域取得了突破性进展,其中Transformer模型凭借其强大的序列建模能力,在自然语言处理(NLP)领域取得了显著成就。BERT、GPT、T5等基于Transformer的预训练模型,在文本分类、机器翻译、问答系统等任务上展现出令人惊叹的性能。然而,这些预训练模型通常在大型
- 已经训练好的 YOLO 模型,添加新的识别标签(类别)的步骤和注意事项
LeonDL168
YOLOYOLO深度学习python人工智能YOLO模型添加新的识别标签YOLO迁移学习yolov5/yolo11
在已经训练好YOLO模型后添加新的识别标签(类别),可以通过迁移学习的方式高效完成,而不必重新训练整个模型。以下是具体步骤和注意事项:一、准备工作保存原模型:确保有原始训练的checkpoint文件(如best.pt或last.pt)。标注新类别数据:为新增类别准备标注数据,格式需与原数据一致(YOLO格式的.txt文件)。更新配置文件:修改data.yaml增加新类别:nc:81#原80类+新增
- 人工智能100问☞第32问:什么是迁移学习?
AI算力那些事儿
人工智能100问人工智能迁移学习机器学习
目录一、通俗解释二、专业解析三、权威参考迁移学习就是让AI把在一个任务中学到的本事,拿来加速另一个任务的学习,实现“举一反三”。一、通俗解释想象你已经学会了打乒乓球,现在去学打网球,是不是会学得更快?因为你的眼力、反应速度、挥拍动作都可以“迁移”过去。这就是迁移学习的意思:AI模型在一个任务上学到的“经验”,可以拿来帮它更快学会另一个任务。举个例子:一个AI模型本来是用来识别猫和狗的,现在你想用它
- 相关概念辨析
wintercoming111
深度学习迁移学习
(1)小样本学习:模仿人类用很少的样本迅速识别新事物的能力,FSL期望模型能在学习了大量数据后,用极少的样本迅速学习新类别。主要方法分为基于微调、数据增强和迁移学习。(2)单样本学习:单样本学习是FSL的特例,当每个类别只有一个样本时,这个问题成为单样本学习。由于在多数情况下两者的设定较为相似,因此通常可以互换使用。(3)零样本学习(ZSL):ZSL则是一个更为极端的情况,当没有样本可供学习时,模
- PaddleHub识别中文人名实战记录及心得
Jason-Lai
NLP人工智能python自然语言处理
一,简介与特性便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tuneAPI,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用,PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型【模型种类丰富】:涵盖大模型、CV、NLP、Audio、Video、工业应用主流六大品类的400+预训练模型,全
- Keras深度学习框架第十二讲:迁移学习与微调
MUKAMO
Python应用AIKeras框架深度学习keras迁移学习
1、绪论1.1迁移学习的定义深度学习的迁移学习是一种技术,它允许将一个任务上学到的知识或模型应用到另一个任务中。其核心思想是将一种任务中学习的特征或模型权重用于另一种任务,以实现知识的迁移和模型的优化。迁移学习在深度学习中具有广泛的应用,特别是在数据量较少的情况下。通过利用在源领域(sourcedomain)上学习到的知识,迁移学习可以帮助目标领域(targetdomain)上的学习任务。迁移学习
- 一文读懂迁移学习:从理论到实践
2201_75491841
迁移学习人工智能机器学习
在机器学习和深度学习的快速发展历程中,数据和计算资源成为了制约模型训练的关键因素。当我们面对新的任务时,重新训练一个从头开始的模型往往耗时耗力,而且在数据量不足的情况下,模型的性能也难以达到理想状态。这时,迁移学习作为一种强大的技术应运而生,它能够帮助我们复用已有的知识,快速且高效地解决新问题。本文将带大家深入了解迁移学习,从基本概念、核心思想,到实际应用和代码实现,全方位剖析这一技术。一、迁移学
- 知识蒸馏在小样本学习中的作用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
知识蒸馏在小样本学习中的作用关键词:知识蒸馏,小样本学习,深度神经网络,软标签,迁移学习,注意力机制摘要:本文将详细探讨知识蒸馏技术在小样本学习中的重要作用。首先,我们将介绍知识蒸馏的基本原理和在小样本学习中的应用,然后分析深度神经网络的基础知识以及知识蒸馏算法原理。接下来,我们将探讨小样本学习算法与模型,并通过实验和评估来验证知识蒸馏在小样本学习中的效果。最后,我们将讨论知识蒸馏的优化策略和面临
- 第31节:迁移学习概念
点我头像干啥
迁移学习人工智能机器学习
1.迁移学习的概念与定义迁移学习(TransferLearning)是机器学习领域的一个重要分支它指的是将一个领域(称为源领域)已经学习到的知识或模式,应用到另一个不同但相关的领域(称为目标领域)中的过程。这种方法的核心思想是通过利用已有知识来提升在新任务上的学习效率和性能,而不是每次都从零开始学习。迁移学习的正式定义在学术文献中,迁移学习通常被定义为:给定一个源领域Ds和源任务Ts,以及一个目标
- 【AI算法工程师必知必会】如何入门大模型微调?
AndrewHZ
人工智能算法深度学习LLM语言模型模型微调LORA
入门大模型微调可遵循以下系统路径,结合核心技术原理与实战方法论逐步掌握关键能力:一、理论基础与核心概念大模型基础理解Transformer架构、注意力机制等核心原理(参考经典论文《AttentionIsAllYouNeed》)。预训练模型的核心优势在于迁移学习能力,通过少量领域数据微调即可显著提升特定任务表现,兼具数据高效性与泛化能力。微调技术分类全量微调:更新模型所有参数,适合计算资源充足场景(
- Pytorch之保存和加载预训练的模型
BlackMan_阿伟
Pytorchpython深度学习机器学习人工智能
在深度学习中会用到迁移学习的方法,也就是我们把在其它数据集上训练比较好的model拿到我们的模型上来进行finetune,这样避免了我们重新去花费时间去训练模型,比如vgg16提取图像特征的这个模型,大大节省了我们训练的时间。这个过程我们就涉及到加载预训练的模型,有的时候我们需要加载整个模型,有时候我们需要模型的一个部分,因此在本文中将会对在Pytroch这个框架中如何加载预训练的模型做以阐述。说
- Pytorch使用手册-计算机视觉迁移学习教程(专题十三)
无声之钟
Pytorch入门到精通pytorch计算机视觉迁移学习
在本教程中,你将学习如何使用迁移学习训练一个卷积神经网络进行图像分类。更多关于迁移学习的内容可以参考CS231n课程笔记。引用课程笔记中的内容:实际上,很少有人从头开始训练一个完整的卷积网络(随机初始化),因为拥有足够大数据集的情况相对罕见。相反,通常会在非常大的数据集上(例如ImageNet,它包含120万张图片和1000个类别)预训练一个卷积网络,然后将该网络用于感兴趣任务的初始化或作为固定的
- 深度学习 ———— 迁移学习
灬0灬灬0灬
深度学习迁移学习人工智能
迁移学习原理什么是迁移学习?迁移学习利用在大规模数据集(如ImageNet)上预训练的模型,改装小数据集(如CIFAR-10)。优势:减少训练时间:预训练模型已学习通用特征(如边缘、纹理)。提升性能:小数据集(如CIFAR-10,50K样本)也能达到很高的准确率。降低过度:预训练权重提供强正则化。两种模式:特征提取:中心层,仅训练全连接层,适合小数据集。压力:解冻部分或全部层,调整权重,适合中大型
- 基于LSTM-Transformer混合模型实现股票价格多变量时序预测(PyTorch版)
矩阵猫咪
lstmtransformerpytorch深度学习scikit-learn
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在金融市场的分析中,股票价格预测一直是一个充满挑战且备受关注的领域。Transforme
- AI人工智能领域Llama的自适应学习机制
AI智能探索者
人工智能llama学习ai
AI人工智能领域Llama的自适应学习机制关键词:Llama、自适应学习、大语言模型、机器学习、神经网络、微调、迁移学习摘要:本文深入探讨了Meta公司开发的Llama大语言模型的自适应学习机制。我们将从基础概念出发,详细解析Llama模型的架构设计、自适应学习原理、实现方法以及实际应用场景。文章包含数学模型分析、Python代码实现示例,并探讨了Llama在不同领域的应用案例。最后,我们将展望自
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><