- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 基于Python的智能决策支持系统:实现智能化决策的关键要素
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录基于Python的智能决策支持系统:实现智能化决策的关键要素11.背景介绍2.核心概念与联系数据收集与预处理模型构建与训练决策规则生成与优化决策结果评估与反馈3.核心算法原理具体操作步骤数据挖掘算法机器学习算法优化算法4.数学模型和公式详细讲解举例说明线性回归模型最小二乘法5.项目实践:代码实例和详细解释说明6.实际应用场景金融领域医疗领域供应链管理智能制造7.工具和资源推荐编程语言和开发
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- 深度学习框架PyTorch——从入门到精通(4)数据转换
Fansv587
Torch框架学习深度学习pytorch人工智能python经验分享
转换(Transforms)很多时候,数据并不总是以训练机器学习算法所需的最终处理形式出现。所以我们需要使用变换对数据进行一些处理,使其适合训练。所有TorchVision数据集都有两个参数——transform来修改特征,target_transform来修改标签——接受包含转换逻辑的可调用项。torchvision.transform模块提供了几个开箱即用的转换。FashionMNIST数据集
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- 热门AI创作助手推荐【第一期】
量子星澜
文心一言AI写作chatgpt
星游AI创作助手人工智能在现代科技中的应用非常广泛,涵盖了诸多领域,包括但不限于以下几个方面:1.语音识别和自然语言处理:人工智能技术被广泛应用于语音识别和自然语言处理领域,例如智能助手、翻译系统、语音交互系统等。2.机器学习和数据分析:人工智能的机器学习算法被用于数据分析、预测建模、用户个性化推荐等领域,帮助企业做出更准确的商业决策。3.计算机视觉:人工智能在计算机视觉领域的应用包括图像识别、视
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 机器学习算法实战——天气数据分析(主页有源码)
喵了个AI
机器学习实战机器学习算法数据分析
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言天气数据分析是气象学和数据科学交叉领域的一个重要研究方向。随着大数据技术的发展,气象数据的采集、存储和分析能力得到了显著提升。机器学习算法在天气数据分析中的应用,不仅能够提高天气预报的准确性,还能为气候研究、灾害预警等提供有力支持。本文将介绍机器学习在天气数据分析中的应用,探讨
- 基于热力梯度的线圈设计用来更替新型的储能方式
热爱电气
数学建模
摘要研究背景:传统电磁储能技术受限于较低的能量密度(约1-5Wh/kg)和充放电速度。热力梯度储能技术通过调控温度场实现多模式能量转换,其潜力能量密度可达100Wh/kg以上。创新点:1.提出三层异质线圈结构(铜基主储层+Bi₂Te₃热电转换层+GdFeO₃磁热调谐层),实现温度梯度与磁场的协同调控。2.开发动态热-电-磁耦合模型,结合有限元分析(COMSOL)与机器学习算法(遗传算法优化参数)。
- 【大一新生必收藏系列】❤机器学习7大方面,30个数据集。纯干货分享❤
.Boss.
机器学习人工智能python算法开发语言笔记#大一新生
.记住了就可以跟同学装起来了嗷....目录.纯干货回归问题分类问题图像分类文本情感分析自然语言处理自动驾驶金融类...........纯干货..................在刚刚开始学习算法的时候,大家有没有过这种感觉,最最重要的那必须是算法本身!其实在一定程度上忽略了数据的重要性。而事实上一定是,质量高的数据集可能是最重要的!数据集在机器学习算法项目中具有非常关键的重要性,数据集的大小、质量
- 安全中心建设关键技术之机器学习
sinfoyou
安全机器学习人工智能
1.1.1功能要求针对目前广为流行的网银、掌上银行撞库行为,需要围绕撞库防护建立针对性的发现、预警、拦截体系。在本课题在大量数据中自动分析获得规律,并利用规律对未知数据进行预测。通过机器学习重点解决目前无法在识别撞库攻击源IP地址的基础上,进一步识别出被撞库成功的账号。由于机器学习算法需要从数据中自动分析获得规律,所以必须要有历史数据。在针对撞库攻击行为分析的场景中,首先需要获取手机银行和网上银行
- 大模型生成人物关系思维导图的实战教程
herosunly
大模型生成人物关系生成思维导图实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了大模型生成人物关系思维导图的实战教程,希望对使用大语言模型的同学们有所帮
- python实现KNN算法的手写数字识别:深入解析与完整项目流程
快撑死的鱼
Python算法精解算法
随着人工智能和机器学习的快速发展,图像识别技术在多个领域得到广泛应用。而手写数字识别作为图像识别的典型场景之一,已经成为研究者和开发者学习、应用机器学习算法的经典项目。本文将深入解析如何使用Python编程语言,结合KNN(K-最近邻)算法实现手写数字识别系统。文章不仅介绍了算法的核心原理,还从用户交互、图像处理、数据预处理等多个角度对整个项目进行了全方位的讲解。读者通过本文,可以全面掌握手写数字
- 手写机器学习算法系列——K-Means聚类算法(一)
木有鱼丸223
手写机器学习算法系列机器学习算法聚类
代码仓库(数字空间项目,GN可上)不想看的话,我也将代码上传到本博客中。1.聚类算法简介在数据科学和机器学习领域,聚类(Clustering)算法是一种无监督学习方法,它将相似的对象分到同一个组,而不同的对象则被分到不同的组。这种算法的主要目标是根据数据的特征进行分组,以此找出数据的内在结构。聚类算法的一个核心特点就是它并不需要预先知道数据的类别,而是通过算法自动进行分组。在实际应用中,我们常见的
- 机器学习算法在司法预测中的应用【附保姆级代码】
一键难忘
机器学习算法人工智能
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~机器学习算法在司法预测中的应用司法预测作为法律领域的前沿研究
- 基于大模型的Text2SQL微调的实战教程(二)
herosunly
AIGCText2SQL微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了基于大模型的Text2SQL微调的实战教程(二),希望对学习大语言模型的
- 机器学习专栏博文汇总
python游乐园
机器学习机器学习人工智能合集
本篇汇集了Python游乐园中机器学习专栏博文,会持续更新,需要的小伙伴可以收藏一下Python机器学习实战:基于不同机器学习算法的鸢尾花数据集分析机器学习常见问题:过拟合及其处理方式结构化数据和非结构化数据的区别是什么如何选择合适的机器学习算法来处理非结构化数据可用于文本分析的机器学习算法都有哪些Python机器学习实战:遗传算法机器学习基础:什么是启发式算法机器学习中常用的调节参数的方法(附P
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- OPPO机器学习算法岗(AI智能体)内推
飞300
人工智能业界资讯
专注于以端设备为中心的AI智能体研究与应用,研究方向包括但不限于智能体与多智能体框架、大模型推理与规划、大模型工具使用等。1、负责大模型驱动的AI智能体框架的实现、评估与优化,并参与构建产品原型;2、设计微调方案、适配算法和调优工程方案,结合智能体应用,实现最佳效果与性能;3、跟踪与研究AI智能体相关前沿技术,并针对大模型推理与规划、工具使用、结构化输出等提出创新性方案。推荐码:X3448036
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 基于大数据架构的就业岗位推荐系统的设计与实现【java或python】—计算机毕业设计源码+LW文档
qq_375279829
大数据架构python课程设计算法
摘要随着互联网技术的迅猛发展和大数据时代的到来,就业市场日益复杂多变,求职者与招聘方之间的信息不对称问题愈发突出。为解决这一难题,本文设计并实现了一个基于大数据架构的就业岗位推荐系统。该系统通过收集、整合并分析大量求职者简历信息、企业招聘信息以及市场动态数据,运用先进的机器学习算法,为求职者提供个性化的岗位推荐服务,同时帮助企业快速定位到合适的候选人。本文将从系统设计的背景与意义、技术基础、需求分
- 机器学习算法(2)—— 线性回归算法
疯狂的石头。
算法机器学习线性回归
‘’‘构造数据集’‘’x=[[80,86],[82,80],[85,78],[90,90],[86,82],[82,90],[78,80],[92,94]]y=[84.2,80.6,80.1,90,83.2,87.6,79.4,93.4]‘’‘模型训练’‘’实例化一个估计器estimator=LinearRegression()使用fit方法进行训练estimator.fit(x,y)查看回归系数
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- Java 中操作 R:深度整合与高效应用
froginwe11
开发语言
Java中操作R:深度整合与高效应用引言随着大数据和机器学习的快速发展,R语言在数据分析和可视化方面扮演着越来越重要的角色。而Java作为一种广泛应用于企业级应用开发的语言,其强大的功能和稳定性使其成为构建高性能应用的首选。本文将探讨Java如何操作R语言,实现高效的数据分析应用。一、Java操作R的背景R语言优势:R语言拥有丰富的统计分析、数据可视化工具和机器学习算法库,是数据分析领域的首选语言
- 机器学习篇——决策树基础
巷955
机器学习算法决策树
引言:决策树是一种常见的机器学习算法,广泛应用于分类和回归任务。它通过树状结构表示决策过程,每个内部节点代表一个特征测试,每个分支代表一个可能的测试结果,而每个叶节点则代表一个类别或回归值。本文将详细介绍决策树的原理、构建过程、优缺点以及实际应用。1.决策树的基本概念1.1什么是决策树?决策树是一种监督学习算法,主要用于分类和回归任务。它通过递归地将数据集划分为更小的子集,最终生成一棵树状结构。决
- 机器学习入门知识
十五境剑修
机器学习人工智能
目录前言一、机器学习是什么?二、机器学习的基本类型1.监督学习2.无监督学习3.半监督学习4.强化学习三、机器学习的工作流程四、常见的机器学习算法五、机器学习的评价指标六、机器学习中的过拟合与欠拟合七、机器学习的应用八、学习机器学习的资源前言随着人工智能的发展,作为人工智能中的一个基础且重要的分支——机器学习也是愈发吸引大家来了解以及学习,那么在学习机器学习前,我们需要先来了解一下什么是机器学习,
- 特征缩放:统一量纲,提高模型性能
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
特征缩放:统一量纲,提高模型性能1.背景介绍在机器学习和数据挖掘领域,我们经常会遇到不同特征之间量纲差异很大的情况。比如,一个数据集中可能包含年龄(0-100)、收入(0-100000)、身高(150-200cm)等不同尺度的特征。这种量纲不统一会给许多机器学习算法(如梯度下降)带来问题,导致收敛速度慢、模型性能差等。特征缩放(FeatureScaling)就是一种用于解决这个问题的常用数据预处理
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found