#-*-coding:utf-8-*-
import torch
import torchvision
from torch.autograd import Variable
from tensorboardX import SummaryWriter
# 模拟输入数据
input_data = Variable(torch.rand(16, 3, 224, 224))
# 从torchvision中导入已有模型
net = torchvision.models.resnet18()
# 声明writer对象,保存的文件夹,异己名称
writer = SummaryWriter(log_dir='./log', comment='resnet18')
with writer:
writer.add_graph(net, (input_data,))
1、运行tensorboard
tensorboard --logdir=./log
2、在浏览器中打开
http://ross-ThinkPad-T480s:6006/
import cv2
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import models
def preprocess_image(cv2im, resize_im=True):
"""
Processes image for CNNs
Args:
PIL_img (PIL_img): Image to process
resize_im (bool): Resize to 224 or not
returns:
im_as_var (Pytorch variable): Variable that contains processed float tensor
"""
# mean and std list for channels (Imagenet)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# Resize image
if resize_im:
cv2im = cv2.resize(cv2im, (224, 224))
im_as_arr = np.float32(cv2im)
im_as_arr = np.ascontiguousarray(im_as_arr[..., ::-1])
im_as_arr = im_as_arr.transpose(2, 0, 1) # Convert array to D,W,H
# Normalize the channels
for channel, _ in enumerate(im_as_arr):
im_as_arr[channel] /= 255
im_as_arr[channel] -= mean[channel]
im_as_arr[channel] /= std[channel]
# Convert to float tensor
im_as_ten = torch.from_numpy(im_as_arr).float()
# Add one more channel to the beginning. Tensor shape = 1,3,224,224
im_as_ten.unsqueeze_(0)
# Convert to Pytorch variable
im_as_var = Variable(im_as_ten, requires_grad=True)
return im_as_var
class FeatureVisualization():
def __init__(self,img_path,selected_layer):
self.img_path=img_path
self.selected_layer=selected_layer
self.pretrained_model = models.vgg16(pretrained=True).features
def process_image(self):
img=cv2.imread(self.img_path)
img=preprocess_image(img)
return img
def get_feature(self):
# input = Variable(torch.randn(1, 3, 224, 224))
input=self.process_image()
print(input.shape)
x=input
for index,layer in enumerate(self.pretrained_model):
x=layer(x)
if (index == self.selected_layer):
return x
def get_single_feature(self):
features=self.get_feature()
print(features.shape)
feature=features[:,0,:,:]
print(feature.shape)
feature=feature.view(feature.shape[1],feature.shape[2])
print(feature.shape)
return feature
def save_feature_to_img(self):
#to numpy
feature=self.get_single_feature()
feature=feature.data.numpy()
#use sigmod to [0,1]
feature= 1.0/(1+np.exp(-1*feature))
# to [0,255]
feature=np.round(feature*255)
print(feature[0])
cv2.imwrite('./img.jpg',feature)
if __name__=='__main__':
# get class
myClass=FeatureVisualization('./input_images/dog.jpg',5)
print (myClass.pretrained_model)
myClass.save_feature_to_img()