- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- OpenAI o1 的价值意义及“强化学习的Scaling Law” & Kimi创始人杨植麟最新分享:关于OpenAI o1新范式的深度思考
光剑书架上的书
ChatGPT大数据AI人工智能计算人工智能算法机器学习
OpenAIo1的价值意义及“强化学习的ScalingLaw”蹭下热度谈谈OpenAIo1的价值意义及RL的Scalinglaw。一、OpenAIo1是大模型的巨大进步我觉得OpenAIo1是自GPT4发布以来,基座大模型最大的进展,逻辑推理能力提升的效果和方法比预想的要好,GPT4o和o1是发展大模型不同的方向,但是o1这个方向更根本,重要性也比GPT4o这种方向要重要得多,原因下面会分析。为什
- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 反思的魔力:用语言的力量强化AI智能体
步子哥
人工智能机器学习
在浩瀚的代码海洋中,AI智能体就像初出茅庐的航海家,渴望探索未知的宝藏。然而,面对复杂的编程任务,他们常常迷失方向。今天,就让我们跟随“反思”的灯塔,见证AI智能体如何通过语言的力量,点亮智慧的明灯,成为代码世界的征服者!智能体的困境近年来,大型语言模型(LLM)在与外部环境(如游戏、编译器、API)交互的领域中大放异彩,化身为目标驱动的智能体。然而,传统的强化学习方法如同一位严苛的训练师,需要大
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 大模型的实践应用29-大语言模型的RLHF(人类反馈强化学习)的具体应用与原理介绍
微学AI
大模型的实践应用语言模型人工智能自然语言处理RLHF
大家好,我是微学AI,今天给大家介绍一下大模型的实践应用29-大语言模型的RLHF(人类反馈强化学习)的具体应用与原理介绍。在当今人工智能发展的浪潮中,大语言模型(LargeLanguageModels,LLMs)凭借其强大的语言理解和生成能力,成为了研究与应用的热点。而在这股浪潮中,一种名为“基于人类反馈的强化学习”的方法脱颖而出,为大语言模型的优化和应用开辟了新的路径。本文首部分将深入浅出地介
- 坚定理想信念,锤炼党性修养
知涵知
理想信念是中国共产党人的政治灵魂,是共产党人精神上的“钙”,没有理想信念,理想信念不坚定,精神上就会“缺钙”,就会得“软骨病”。党员干部只有坚定理想信念,强化责任担当,锤炼道德操守,提升党性修养,才能切实做到为党分忧、为国尽责、为民奉献。坚定理想信念,就要强化学习精神、自律精神、担当精神。思想理论上的坚定清醒是政治上坚定的前提,党员干部要始终把理论学习作为政治责任、事业需要和精神追求,积极参加组织
- python 物理引擎_在 Gym 上构建会动的人工智障1(python)
weixin_39542608
python物理引擎
背景说明作者最近使用processing的一个重要目标就是为学生的编程学习设计具体的应用场景,最近突然发现有一个包已经提供了部分功能,所以探索一下。这个包就是我们今天的主人公:Gym。Gym是用于开发和比较强化学习算法的python包,但是我们也完全可以使用它来作为我们自己程序的应用背景,并提供可视化。简单的说,就是我们使用自己写的小程序,而不是强化学习算法,来尝试完成其中的任务,并把完成任务的过
- 强化学习(二)----- 马尔可夫决策过程MDP
Duckie-duckie
机器学习数据数据分析数据挖掘机器学习算法
1.马尔可夫模型的几类子模型大家应该还记得马尔科夫链(MarkovChain),了解机器学习的也都知道隐马尔可夫模型(HiddenMarkovModel,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关。马尔可夫决策过程(MarkovDecisionProcess,MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作
- Python强化学习,基于gym的马尔可夫决策过程MDP,动态规划求解,体现序贯决策
baozouxiaoxian
pythongymqlearningpython强化学习mdp动态规划求解马尔科夫决策过程
决策的过程分为单阶段和多阶段的。单阶段决策也就是单次决策,这个很简单。而序贯决策指按时间序列的发生,按顺序连续不断地作出决策,即多阶段决策,决策是分前后顺序的。序贯决策是前一阶段决策方案的选择,会影响到后一阶段决策方案的选择,后一阶段决策方案的选择是取决于前一阶段决策方案的结果。强化学习过程中最典型的例子就是非线性二级摆系统,有4个关键值,小车受力,受力方向,摆速度,摆角,每个状态下都需要决策车的
- 强化学习分类
0penuel0
Model-free:Qlearning,Sarsa,PolicyGradientsModel-based:能通过想象来预判断接下来将要发生的所有情况.然后选择这些想象情况中最好的那种基于概率:PolicyGradients基于价值:Qlearning,Sarsa两者融合:Actor-Critic回合更新:Monte-carlolearning,基础版的policygradients单步更新:Ql
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- 一对一包教会脑电教学服务
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★最近有不少人留言“脑电该怎么学习?想强化学习脑电某个内容版块可以吗?...”,也有小伙伴联系我们,咨询脑电相关内容能
- 基于时序差分的无模型强化学习:Q-learning 算法详解
晓shuo
算法强化学习
目录一、无模型强化学习中的时序差分方法与Q-learning1.1时序差分法1.2Q-learning算法状态-动作值函数(Q函数)Q-learning的更新公式Q-learning算法流程Q-learning的特点1.3总结一、无模型强化学习中的时序差分方法与Q-learning 动态规划算法依赖于已知的马尔可夫决策过程(MDP),在环境的状态转移概率和奖励函数完全明确的情况下,智能体无需与环
- (18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
码农三叔
强化学习从入门到实践人工智能深度学习股票交易模型DRLDoubleDQNDuelingDQN
在本章的这个项目中,实现了一个用于股票交易的DRL模型,旨在展示DRL在金融领域的潜力,提供其在股票交易中应用的实际例子。希望通过本章内容的学习,能够为那些对金融与机器学习交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。传统的交易策略通常依赖于经验、基本面分析或技术分析。然而,这些方法往往无法在快速
- 深度学习算法——Transformer
fw菜菜
数学建模深度学习transformer人工智能数学建模pythonpytorch
参考教材:动手学pytorch一、模型介绍Transformer模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管Transformer最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,Trans‐former是由编码器和解码器
- sumo carla 自动驾驶联合仿真 安装 配置 教程 开发 驾驶模拟 强化学习
jZhUeZPQZw
自动驾驶人工智能机器学习
sumocarla自动驾驶联合仿真安装配置教程开发驾驶模拟强化学习轨迹预测轨迹规划标题:基于SUMO和CARLA的自动驾驶联合仿真系统安装与配置:教程与开发探索摘要:随着自动驾驶技术的迅猛发展,仿真环境在自动驾驶系统的评估、训练和验证中扮演着重要的角色。本文介绍了基于SUMO(SimulationofUrbanMObility)和CARLA(CarLearningtoAct)的自动驾驶联合仿真系统
- Python知识点:如何使用Python实现强化学习机器人
杰哥在此
Python系列python机器人开发语言编程面试
实现一个强化学习机器人涉及多个步骤,包括定义环境、状态和动作,选择适当的强化学习算法,并训练模型。下面是一个简单的例子,使用Python和经典的Q-learning算法来实现一个强化学习机器人,目标是通过OpenAIGym提供的FrozenLake环境训练机器人学会如何在冰面上移动以找到目标。1.安装必要的库首先,需要安装OpenAIGym和Numpy。你可以使用以下命令安装它们:pipinsta
- 机器学习在医学中的应用
听忆.
机器学习人工智能
边走、边悟迟早会好机器学习在医学中的应用是一个广泛且复杂的领域,涵盖了从基础研究到临床应用的多个方面。以下是一个万字总结的结构性思路,分章节深入探讨不同应用场景、技术方法、挑战与未来展望。1.引言背景与发展:介绍医学领域的数字化转型以及机器学习的兴起,探讨其在医学中的潜力。机器学习的基本概念:简要介绍机器学习的基本原理、分类(监督学习、非监督学习、强化学习等)和常用算法(如神经网络、支持向量机、随
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 【科技前沿】用深度强化学习优化电网,让电力调度更聪明!
风清扬雨
人工智能人工智能python智能电网深度强化学习
Hey小伙伴们,今天我要跟大家分享一个超级酷炫的技术应用——深度强化学习在电网优化中的典型案例!如果你对机器学习感兴趣,或是正寻找如何用AI技术解决实际问题的方法,这篇分享绝对不容错过!✨开场白大家好,我是你们的技术小助手!今天我们要聊的是如何利用深度强化学习(DRL)来优化电网的调度,让电力系统变得更智能、更高效。引入话题想象一下,如果你能够通过一种先进的技术手段,自动调整电网中的能源分配,不
- 大模型对齐方法笔记一:DPO及其变种IPO、KTO、CPO
chencjiajy
深度学习笔记机器学习人工智能
DPODPO(DirectPreferenceOptimization)出自2023年5月的斯坦福大学研究院的论文《DirectPreferenceOptimization:YourLanguageModelisSecretlyaRewardModel》,大概是2023-2024年最广为人知的RLHF的替代对齐方法了。DPO的主要思想是在强化学习的目标函数中建立决策函数与奖励函数之间的关系,以规避
- 多智能体环境设计(二)
AI-星辰
强化学习自定义环境python机器学习
多智能体环境设计:接口设计与实现目录引言PettingZoo框架概述核心接口方法详解3.1reset()方法3.2step(action)方法3.3observe(agent)方法3.4render()方法空间定义4.1观察空间4.2动作空间高级特性5.1并行环境5.2智能体通信5.3动态环境性能优化测试和调试实际应用示例最佳实践和常见陷阱1.引言多智能体环境是强化学习和人工智能研究中的一个重要领
- 【伤寒强化学习训练】打卡第四十五天 一期90天
A卐炏澬焚
3.5.2麻黄汤续讲与大、小青龙汤麻黄九禁【7.18】脉浮紧者,法当汗出而解。若身重心悸者,不可发汗,须自汗出乃愈。所以然者,尺中脉微,此里虚也。须里实,津液自和,便自汗出愈。【7.19】脉浮紧者,法当身疼痛,宜以汗解之。假令尺中迟者,不可发汗。所以然者,以荣气不足,血弱故也。【7.18】:脉浮紧的人照理说要发汗,如果身体重、心悸是不可以发汗;发汗,不一定用麻黄汤,大青龙汤也可以感冒很多人身体都是
- 从自动驾驶看无人驾驶叉车的技术落地和应用
电气_空空
自动驾驶自动驾驶机器人人工智能毕设
摘要|介绍无人驾驶叉车在自动驾驶技术中的应用,分析其关键技术,如环境感知、定位、路径规划等,并讨论机器学习算法和强化学习算法的应用以提高无人叉车的运行效率和准确性。无人叉车在封闭结构化环境、机器学习、有效数据集等方法的助力下,可有效推动叉车无人驾驶关键技术的发展。关键词:无人叉车;自动驾驶;机器学习;数据集随着人工智能技术的持续进步,无人叉车领域的供给与需求均呈现迅猛增长态势。它们不仅正在逐步替代
- 强化学习自定义环境基础知识
AI-星辰
强化学习自定义环境python机器学习
1.引言本文旨在全面介绍OpenAIGym自定义环境的创建过程,重点解析其接口、关键属性和函数。本指南适合初学者深入了解强化学习环境的构建原理和实践方法。2.OpenAIGym环境基础OpenAIGym提供了一个标准化的接口,用于创建和使用强化学习环境。了解这个接口的核心组件是创建自定义环境的基础。2.1Env类所有Gym环境都继承自gym.Env类。这个基类定义了环境应该具有的基本结构和方法。i
- 【《伤寒论》强化学习训练】打卡第32天,一期目标90天
最闪亮的那颗星_b02d
一、桂枝加葛根汤和葛根汤不能通用,因为葛根汤里有麻黄,会散阳气。太阳传到阳明时血分受邪,要用麻黄从血分把邪气发出来,所以用葛根汤治燥热感冒。桂枝汤治营卫不调的出汗或桂枝加附子汤治阳虚自汗,不能一开始就用黄芪,黄芪会让桂枝汤发挥不了通营卫的效果,汗止不了。人体表面的能量不足的时候,身体不能收摄自己身体的水分,桂枝加附子汤里有附子,可治阳虚自汗。玉屏风散治表虚的汗有效;桂枝加附子汤治虚汗有效,但是两个
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要