TensorFlow - tf.multiply和tf.matmul 区别
flyfish
# a
# [[1, 2, 3],
# [4, 5, 6]] a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
# b1
# [[ 7, 8],
# [ 9, 10],
# [11, 12]] b1 = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
#b2
#[[ 7 8 9]
# [10 11 12]] b2 = tf.constant([7, 8, 9, 10, 11, 12], shape=[2, 3])
# c矩阵相乘 第一个矩阵的列数(column)等于第二个矩阵的行数(row)
# [[ 58, 64],
# [139, 154]] c = tf.matmul(a, b1)
# d`数元素各自相乘
#[[ 7 16 27]
# [40 55 72]] d = tf.multiply(a, b2) #维度必须相等 with tf.Session():
print(d.eval())
关于其他计算
b3 = tf.constant([7, 8, 9,], shape=[1, 3])
tf.multiply(a, b3)
结果是
[[ 7 16 27]
[28 40 54]]
b4 = tf.constant([7, 8], shape=[2, 1])
tf.multiply(a, b4)
结果是
[[ 7 14 21]
[32 40 48]]
b5 = tf.constant([7], shape=[1, 1])
tf.multiply(a, b5)
结果是
[[ 7 14 21]
[28 35 42]]