RNN cell的实现

RNN cell的实现

flyfish

已编译通过
步骤
1 使用tanh激活函数计算隐藏状态
at=tanh(Waaat1+Waxxt+ba) a ⟨ t ⟩ = tanh ⁡ ( W a a a ⟨ t − 1 ⟩ + W a x x ⟨ t ⟩ + b a )

2 使用新的隐藏状态 at a ⟨ t ⟩ 计算预测值,
y^t=softmax(Wyaat+by) y ^ ⟨ t ⟩ = s o f t m a x ( W y a a ⟨ t ⟩ + b y )
已提供softmax函数

3 在cache中存储 (at,at1,xt,parameters) ( a ⟨ t ⟩ , a ⟨ t − 1 ⟩ , x ⟨ t ⟩ , p a r a m e t e r s )
4 返回 at,yt,cache a ⟨ t ⟩ , y ⟨ t ⟩ , c a c h e

import numpy as np

def softmax(x):
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum(axis=0)

def rnn_cell_forward(xt, a_prev, parameters):

    # Retrieve parameters from "parameters"
    #字符串与值的一种映射方法
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    #按照上面的公式写就行
    # compute next activation state using the formula given above np.tanh
    #使用上面的np.tanh公式计算下一个激活状态
    a_next = np.tanh(np.dot(Wax, xt) + np.dot(Waa, a_prev) + ba)
    yt_pred = softmax(np.dot(Wya, a_next) + by)


    # store values you need for backward propagation in cache
    #cache在反向传播中会使用
    cache = (a_next, a_prev, xt, parameters)

    return a_next, yt_pred, cache


np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}

a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
print("a_next = ", a_next)
print("a_next.shape = ", a_next.shape)
print("yt_pred[1] =", yt_pred[1])
print("yt_pred.shape = ", yt_pred.shape)

你可能感兴趣的:(深度学习)