AlexNet,ResNet34,SqueezeNet模型的实现

文章目录

    • 概要
    • __init__.py
    • basic_module.py
    • 具体模型定义
      • alexnet.py
      • resnet34.py
      • squeezenet.py
    • References

概要

如果对这几种基础模型不太了解,请先参考博客。

首先来看程序文件的组织结构:

├── checkpoints/
├── data/
│   ├── __init__.py
│   ├── dataset.py
│   └── get_data.sh
├── models/
│   ├── __init__.py
│   ├── alexnet.py
│   ├── basic_module.py
│   └── resnet34.py
└── utils/
│   ├── __init__.py
│   └── visualize.py
├── config.py
├── main.py
├── requirements.txt
├── README.md

其中:

  • checkpoints/: 用于保存训练好的模型,可使程序在异常退出后仍能重新载入模型,恢复训练
  • data/:数据相关操作,包括数据预处理、dataset实现等
  • models/:模型定义,可以有多个模型,例如上面的AlexNet和ResNet34,一个模型对应一个文件
  • utils/:可能用到的工具函数,在本次实验中主要是封装了可视化工具
  • config.py:配置文件,所有可配置的变量都集中在此,并提供默认值
  • main.py:主文件,训练和测试程序的入口,可通过不同的命令来指定不同的操作和参数
  • requirements.txt:程序依赖的第三方库
  • README.md:提供程序的必要说明

init.py

模型的定义主要保存在models/目录下,其中BasicModule是对nn.Module的简易封装,提供快速加载和保存模型的接口。

其它自定义模型一般继承BasicModule,然后实现自己的模型。其中alexnet.py实现了alexnet,resnet34.py实现了resnet34。在models/__init__py中,代码如下:

from .alexnet import AlexNet
from .resnet34 import ResNet34
from .squeezenet import SqueezeNet
# from torchvision.models import InceptinV3
# from torchvision.models import alexnet as AlexNet

这样在主函数中就可以写成:

from models import AlexNet
或
import models
model = models.AlexNet()import models
model = getattr(models, 'AlexNet')()

其中最后一种写法最为关键,这意味着我们可以通过字符串直接指定使用的模型,而不必使用判断语句,也不必在每次新增加模型后都修改代码。新增模型后只需要在models/__init__.py中加上from .new_module import new_module即可。

basic_module.py

# coding:utf-8
import torch as t
import time


class BasicModule(t.nn.Module):
    """
    简易封装了nn.Module,主要是提供了save和load两个方法
    """

    def __init__(self):
        super(BasicModule, self).__init__()
        self.model_name = str(type(self))  # 模型的默认名字

    def load(self, path):
        """
        可加载指定路径的模型
        """
        self.load_state_dict(t.load(path))

    def save(self, name=None):
        """
        保存模型,默认使用“模型名字+时间”作为文件名
        如:resnet34_05-30_22.29.46.pth
        """
        if name is None:
            prefix = 'checkpoints/' + self.model_name + '_'
            name = time.strftime(prefix + '%m-%d_%H.%M.%S.pth')  # 有改动,windows文件名不支持冒号:
        t.save(self.state_dict(), name)
        return name

    def get_optimizer(self, lr, weight_decay):
        return t.optim.Adam(self.parameters(), lr=lr, weight_decay=weight_decay)


class Flat(t.nn.Module):
    """
    把输入reshape成(batch_size,dim_length)
    """

    def __init__(self):
        super(Flat, self).__init__()
        # self.size = size

    def forward(self, x):
        return x.view(x.size(0), -1)
        

具体模型定义

alexnet.py

# coding:utf-8
from torch import nn
from .basic_module import BasicModule


class AlexNet(BasicModule):
    """
    code from torchvision/models/alexnet.py
    结构参考 
    """

    def __init__(self, num_classes=2):
        super(AlexNet, self).__init__()

        self.model_name = 'alexnet'

        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )

        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x

resnet34.py

# coding:utf-8
from .basic_module import BasicModule
from torch import nn
from torch.nn import functional as F
import time


class ResidualBlock(nn.Module):
    """
    实现子module: Residual Block
    """

    def __init__(self, inchannel, outchannel, stride=1, shortcut=None):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),
            nn.BatchNorm2d(outchannel))
        self.right = shortcut

    def forward(self, x):
        out = self.left(x)
        residual = x if self.right is None else self.right(x)
        out += residual
        return F.relu(out)


class ResNet34(BasicModule):
    """
    实现主module:ResNet34
    ResNet34包含多个layer,每个layer又包含多个Residual block
    用子module来实现Residual block,用_make_layer函数来实现layer
    """

    def __init__(self, num_classes=2):
        super(ResNet34, self).__init__()
        self.model_name = 'resnet34'

        # 前几层: 图像转换
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2, 1))

        # 重复的layer,分别有3,4,6,3个residual block
        self.layer1 = self._make_layer(64, 128, 3)
        self.layer2 = self._make_layer(128, 256, 4, stride=2)
        self.layer3 = self._make_layer(256, 512, 6, stride=2)
        self.layer4 = self._make_layer(512, 512, 3, stride=2)

        # 分类用的全连接
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, inchannel, outchannel, block_num, stride=1):
        """
        构建layer,包含多个residual block
        """
        shortcut = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
            nn.BatchNorm2d(outchannel))

        layers = []
        layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))

        for i in range(1, block_num):
            layers.append(ResidualBlock(outchannel, outchannel))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.pre(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = F.avg_pool2d(x, 7)
        x = x.view(x.size(0), -1)
        return self.fc(x)

squeezenet.py

# coding:utf-8
from torchvision.models import squeezenet1_1
from models.basic_module import BasicModule
from torch import nn
from torch.optim import Adam


class SqueezeNet(BasicModule):
    def __init__(self, num_classes=2):
        super(SqueezeNet, self).__init__()
        self.model_name = 'squeezenet'
        self.model = squeezenet1_1(pretrained=True)
        # 修改 原始的num_class: 预训练模型是1000分类
        self.model.num_classes = num_classes
        self.model.classifier =   nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Conv2d(512, num_classes, 1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(13, stride=1)
        )

    def forward(self,x):
        return self.model(x)

    def get_optimizer(self, lr, weight_decay):
        # 因为使用了预训练模型,我们只需要训练后面的分类
        # 前面的特征提取部分可以保持不变
        return Adam(self.model.classifier.parameters(), lr, weight_decay=weight_decay) 

done~

References

  • https://blog.csdn.net/ft_sunshine/article/details/90950048
  • https://github.com/chenyuntc/pytorch-book

你可能感兴趣的:(深度学习(DL),计算机视觉(CV))