- spark on yarn
不辉放弃
pyspark大数据开发
SparkonYARN是指将Spark应用程序运行在HadoopYARN集群上,借助YARN的资源管理和调度能力来管理Spark的计算资源。这种模式能充分利用现有Hadoop集群资源,简化集群管理,是企业中常用的Spark部署方式。核心角色•Spark应用:包含Driver进程和Executor进程。Driver负责任务调度、逻辑处理;Executor负责执行具体任务并存储数据。•YARN组件:◦
- 深入解析Hadoop中的Region分裂与合并机制
码字的字节
hadoop布道师hadoop大数据分布式Region分裂合并
Hadoop与Region的基本概念Hadoop的分布式架构基础作为大数据处理的核心框架,Hadoop通过分布式存储和计算解决了海量数据的处理难题。其架构核心由HDFS(HadoopDistributedFileSystem)和MapReduce组成,前者负责数据的分布式存储,后者实现分布式计算。在HDFS中,数据被分割成固定大小的块(默认128MB)分散存储在集群节点上,而MapReduce则通
- 深入解析Hadoop RPC:技术细节与推广应用
码字的字节
hadoop布道师HadoopRPC
HadoopRPC框架概述在分布式系统的核心架构中,远程过程调用(RPC)机制如同神经网络般连接着各个计算节点。Hadoop作为大数据处理的基石,其自主研发的RPC框架不仅支撑着内部组件的协同运作,更以独特的工程哲学诠释了分布式通信的本质。透明性:隐形的通信桥梁HadoopRPC最显著的特征是其对通信细节的完美封装。当NameNode接收DataNode的心跳检测,或ResourceManager
- 深入解析Hadoop:大数据处理的基石
学习的锅
hadoop大数据分布式
随着信息技术的快速发展和互联网的普及,数据的产生速度极具增加。面对如此海量的数据,传统的数据处理工具显得力不从心。在这种背景下,诞生了一系列用于处理大数据的框架与工具,而ApacheHadoop便是其中最为知名和应用最广泛的一个。本文将深入解析Hadoop的基本原理、架构及其在大数据处理中的重要性。1.Hadoop的起源与发展Hadoop起源于Google公司的三篇奠基性论文:GoogleFile
- 大数据技术关键技术组件
大数据技术是一组用于处理、分析和管理大规模数据集的复杂方法和技术。这些数据集的特点是容量大、增长速度快,且结构多样化,包括结构化、半结构化和非结构化数据。传统数据库管理和分析工具在处理此类数据时效率低下或无法胜任,因此需要专门的大数据技术栈来支持高效的数据处理和智能决策。大数据技术的关键组件通常包括:分布式存储系统:HadoopDistributedFileSystem(HDFS):一个高度可扩展
- 大数据领域HDFS的集群资源管理优化
大数据洞察
大数据与AI人工智能大数据AI应用大数据hdfshadoopai
大数据领域HDFS的集群资源管理优化关键词:HDFS;集群资源管理;存储优化;性能调优;副本策略;负载均衡;NameNode优化摘要:HDFS(Hadoop分布式文件系统)作为大数据领域的基石,承载着海量数据的存储与管理重任。随着数据规模爆炸式增长和业务复杂度提升,HDFS集群的资源管理面临着"存不下、跑不快、管不好"的三重挑战:存储资源浪费与不足并存、计算与存储资源匹配失衡、集群运维效率低下。本
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- HDFS文件系统
HDFS文件系统是hadoop生态系统的核心,主要用于分布式文件存储,它具备高可用,流式读取,文件结构简单,跨平台的特点,它的集群采用的是主从结构,分为命名节点和数据节点,命名节点主要用于元数据管理(例如对目录,文件的创建,数据块与数据节点的关系维护管理)及数据节点管理(例如数据节点之间数据的复制,节点状态的维护,节点间数据的均衡),该文件系统最基本的存储单位是block即数据块,默认大小是64M
- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- 大数据技术是解决什么问题的?
@佳瑞
大数据
基础知识1TB(太字节)=1024GB1PB(拍字节)=1024TB大数据核心框架HadoopHadoop作为大数据技术生态的核心框架,主要解决了海量数据(TB/PB级)的存储、处理和分析难题,尤其是在传统数据库(如MySQL)和单机计算无法应对的场景下,提供了低成本、高可靠、可扩展的解决方案。其核心解决的问题可归纳为以下几点:海量数据的存储问题传统痛点:单机存储容量有限(如单服务器硬盘通常在TB
- Hadoop与图像识别与处理
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Hadoop与图像识别与处理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在大数据时代,数据的爆炸性增长对数据处理技术提出了新的挑战。图像数据作为一种重要的数据形式,其处理和分析在许多领域中具有重要意义,如医疗影像分析、自动驾驶、安防监控等。然而,传统的图像处理方法在面对海量图像数据时显得力不从心。Hadoop作为一种分
- hadoop 集群问题处理
一切顺势而行
hadoop大数据分布式
1.1.JournalNode的作用在HDFSHA配置中,为了实现两个NameNode之间的状态同步和故障自动切换,Hadoop使用了一组JournalNode来管理共享的编辑日志。具体来说,JournalNode的主要职责包括:共享编辑日志:JournalNode节点组成了一个分布式系统,用于存储HDFS的编辑日志(EditLogs)。这两个日志文件记录了对HDFS所做的所有更改,如文件创建、删
- sqoop从mysql导数据到hdfs,出现java.lang.ClassNotFoundException: Class QueryResult not found
无级程序员
大数据sqoopmysqlhdfs
运行sqoop从postgresql/mysql导入数据到hdfs,结果出现如下错误:2025-07-1816:59:13,624INFOorm.CompilationManager:HADOOP_MAPRED_HOMEis/opt/datasophon/hadoop-3.3.3Note:/opt/sqoop/bin/QueryResult.javausesoroverridesadeprecat
- hive底层原理 sql执行过程_Hive原理总结(完整版)
目录课程大纲(HIVE增强)31.Hive基本概念41.1Hive简介41.1.1什么是Hive41.1.2为什么使用Hive41.1.3Hive的特点41.2Hive架构51.2.1架构图51.2.2基本组成51.2.3各组件的基本功能51.3Hive与Hadoop的关系61.4Hive与传统数据库对比61.5Hive的数据存储62.Hive基本操作72.1DDL操作72.1.1创建表72.1.
- 六、深度剖析 Hadoop 分布式文件系统(HDFS)的数据存储机制与读写流程
深度剖析Hadoop分布式文件系统(HDFS)的数据存储机制与读写流程在当今大数据领域当中,Hadoop分布式文件系统(HDFS)作为极为关键的核心组件之一,为海量规模的数据的存储以及处理构筑起了坚实无比的根基。本文将会对HDFS的数据存储机制以及读写流程展开全面且深入的探究,通过将原理与实际的实例紧密结合的方式,助力广大读者更加全面地理解HDFS的工作原理以及其具体的应用场景。一、HDFS概述H
- Linux教程(4)----[hive数据仓库工具]
.房东的猫
Linux教程(完善中~~)linux
Hive基本概念Hive简介什么是HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。为什么使用Hive直接使用hadoop所面临的问题人员学习成本太高
- 【Hadoop】onekey_install脚本
菜萝卜子
Linuxhadoop大数据分布式
hosts[root@kafka01hadoop-script]#cat/etc/hosts127.0.0.1localhostlocalhost.localdomainlocalhost4localhost4.localdomain4::1localhostlocalhost.localdomainlocalhost6localhost6.localdomain6192.168.100.150k
- Hadoop与云原生集成:弹性扩缩容与OSS存储分离架构深度解析
Hadoop与云原生集成的必要性Hadoop在大数据领域的基石地位作为大数据处理领域的奠基性技术,Hadoop自2006年诞生以来已形成包含HDFS、YARN、MapReduce三大核心组件的完整生态体系。根据CSDN技术社区的分析报告,全球超过75%的《财富》500强企业仍在使用Hadoop处理EB级数据,其分布式文件系统HDFS通过数据分片(默认128MB块大小)和三副本存储机制,成功解决了P
- Hive简介
文章目录Hive简介Hive特点Hive和RDBMS的对比Hive的架构Hive的数据组织Hive数据类型Hive简介1、Hive由Facebook实现并开源2、是基于Hadoop的一个数据仓库工具3、可以将结构化的数据映射为一张数据库表4、并提供HQL(HiveSQL)查询功能5、底层数据是存储在HDFS上6、Hive的本质是将SQL语句转换为MapReduce任务运行7、使不熟悉MapRedu
- python基于Hadoop的NBA球员大数据分析与可视化系统
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 大数据技术之集群数据迁移
dfs.namenode.rpc-address.nameservice1.namenode30hadoop104:8020dfs.namenode.rpc-address.nameservice1.namenode37hadoop106:8020dfs.namenode.http-address.nameservice1.namenode30hadoop104:9870dfs.namenode.
- HIVE(二)
2301_78012738
hive数据仓库
目录访问HIVE的三种方式DDLDML数据操作向表中装载数据数据导出常用函数Like和RLike分组Join排序分区表和分桶表访问HIVE的三种方式启动Hive命令,CtrlC退出客户端,执行测试语句,与sql一致[wyc@hadoop102hive]$bin/hive经验小结:在hive中执行语句报错:ExecutionError,returncode2fromorg.apache.hadoop
- 安全运维的 “五层防护”:构建全方位安全体系
KKKlucifer
安全运维
在数字化运维场景中,异构系统复杂、攻击手段隐蔽等挑战日益突出。保旺达基于“全域纳管-身份认证-行为监测-自动响应-审计溯源”的五层防护架构,融合AI、零信任等技术,构建全链路安全运维体系,以下从技术逻辑与实践落地展开解析:第一层:全域资产纳管——筑牢安全根基挑战云网基础设施包含分布式计算(Hadoop/Spark)、数据流处理(Storm/Flink)等异构组件,通信协议繁杂,传统方案难以全面纳管
- Hive 事务表(ACID)问题梳理
文章目录问题描述分析原因什么是事务表概念事务表和普通内部表的区别相关配置事务表的适用场景注意事项设计原理与实现文件管理格式参考博客问题描述工作中需要使用pyspark读取Hive中的数据,但是发现可以获取metastore,外部表的数据可以读取,内部表数据有些表报错信息是:AnalysisException:org.apache.hadoop.hive.ql.metadata.HiveExcept
- Docker快速构建Hive测试环境
静谧星光
dockerhive容器编程
Docker是一种流行的容器化平台,可以帮助我们快速构建和管理应用程序的环境。在本文中,我们将学习如何使用Docker快速构建Hive测试环境。Hive是一个基于Hadoop的数据仓库基础设施,它提供了一种类似于SQL的查询语言,用于分析和处理大规模数据集。步骤1:安装Docker和DockerCompose首先,我们需要安装Docker和DockerCompose。您可以根据您的操作系统类型,从
- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- YARN container cpu超核如何解决
fzip
YARN超核
在ApacheHadoopYARN中,ContainerCPU超核(即Container使用的CPU资源超过分配量)是一个常见问题,可能导致集群性能下降或不稳定。以下是解决该问题的详细步骤:1.问题诊断1.1确认超核现象查看YARNWebUI:访问http://:8088,检查Container的CPU使用率是否持续超过分配的vCore数。检查NodeManager日志:查看/var/log/ha
- Hadoop-Mapreduce入门
Hadoop-Mapreduce入门MapReduce介绍mapreduce设计MapReduce编程规范入门案例WordCountMapReduce介绍MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。知识。Map负责“分”,把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Redu
- Hadoop MapReduce入门
且行且安~
数据分析进阶之路Linux命令hadoopMapReduce入门
入门简介计算过程分为两个阶段Map和ReduceMap阶段并行处理输入数据Reduce阶段对Map结果进行汇总针对python语言来说:map函数或者reduce函数来说,输出的数据格式为元组tuple一个简单的MapReduce程序只需要指定map()reduce()input()output()剩下的由框架完成。Linux常见命令:-读取文件(文本文件,在Windows下使用记事本打开的文件)
- Hadoop MapReduce 入门
一、Hadoop3.0.4环境准备1.环境要求Java8(Hadoop3.0.4不支持Java11+)单节点或多节点Linux系统(推荐Ubuntu18.04+)至少4GB内存(建议8GB+)50GB以上磁盘空间2.安装Java#安装Java8sudoapt-getinstallopenjdk-8-jdk#验证安装java-version3.下载与安装Hadoop3.0.4#下载Hadoop3.0
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息