Hadoop上编写mr计算

导言:使用java编写map reduce程序,Map Reduce是包含两个过程:Map过程和Reduce过程。每一个过程都包含键值对作为输入,程序员可以选择键和值的类型。Map和Reduce的数据流是这样的:

Input==>Map==>Map Output==>sort and shuffle==>Reduce==>Final Output

使用Java编写Hadoop Map Reduce代码Map Reduce程序需要三个元素:Map, Reduce和运行任务的代码(在这里,我们把它叫做Invoker)。

1.创建Map(可以以任何名称)类和map函数,map函数在org.apache.hadoop.mapreduce.Mapper.class类中,以抽象方法定义。

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
 
import java.io.IOException;
 
public class Map extends Mapper {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException {
        word.set(value.toString());
        context.write(word, one);
    }
}

说明:Mapper类是一个泛型类,带有4个参数(输入的键,输入的值,输出的键,输出的值)。在这里输入的键为LongWritable(hadoop中的Long类型),输入的值为Text(hadoop中的String类型),输出的键为Text(关键字)和输出的值为Intwritable(hadoop中的int类型)。以上所有hadoop数据类型和java的数据类型都很相像,除了它们是针对网络序列化而做的特殊优化。

2.创建Reducer(任何名字)类和reduce函数,reduce函数是在org.apache.hadoop.mapreduce.Reducer.class类中,以抽象方法定义的。

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
 
import java.io.IOException;
import java.util.Iterator;
 
public class Reduce extends Reducer {
    @Override
    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for(IntWritable intWritable : values){
            sum += intWritable.get();
        }
        context.write(key, new IntWritable(sum));
    }
}
说明:Reducer类是一个泛型类,带有4个参数(输入的键,输入的值,输出的键,输出的值)。在这里输入的键和输入的值必须跟Mapper的输出的类型相匹配,输出的键是Text(关键字),输出的值是Intwritable(出现的次数)。

3.我们已经准备号了Map和Reduce的实现类,现在我们需要invoker来配置Hadoop任务,调用Map Reduce程序。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
public class WordCount{
    public static void main(String[] args) throws Exception {
        Configuration configuration = new Configuration();
        configuration.set("fs.default.name", "hdfs://localhost:10011");
        configuration.set("mapred.job.tracker","localhost:10012");
 
        Job job = new Job(configuration, "Word Count");
 
        job.setJarByClass(WordCount.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
        job.setOutputFormatClass(org.apache.hadoop.mapreduce.lib.output.TextOutputFormat.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
 
        //Submit the job to the cluster and wait for it to finish.
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
4.编译、创建jar

mkdir WordCount javac -classpath ${HADOOP_HOME}/hadoop-0.20.2+228-core.jar -d WordCount path/*.java

Maven项目使用 mvn package打成jar包 WordCount.jar

5.在本地文件系统中创建输入文件

cd /wordcount/input gedit file01 gedit file02

6.复制本地的输入文件到HDFS

$HADOOP_HOME/bin/hadoop fs -cp ~/wordcount/input/file01 /home/user1/dfs/input/file01 
$HADOOP_HOME/bin/hadoop fs -cp ~/wordcount/input/file02 /home/user1/dfs/input/file02
7.执行jar包

$HADOOP_HOME/bin/hadoop jar WordCount.jar WordCount /home/user1/dfs/input /home/user1/dfs/output

8.执行完毕后,以下的命令是用于查看reduce的输出文件

$HADOOP_HOME/bin/hadoop fs -ls /home/user1/dfs/output/

9.使用如下命令来查看文件:

$HADOOP_HOME/bin/hadoop fs -cat hdfs:///home/user1/dfs/output/part-00000 
$HADOOP_HOME/bin/hadoop fs -cat hdfs:///home/user1/dfs/output/part-00001 
$HADOOP_HOME/bin/hadoop fs -cat hdfs:///home/user1/dfs/output/part-00002



你可能感兴趣的:(HDFS,hadoop,MapReduce)