- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
wlz249
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- LLaMA-Factory 微调训练
zsh_abc
llamadocker深度学习人工智能pythonlinux
LLaMA-Factory微调训练该框架功能,标注-微调-导出-合并-部署,一整条流程都有,而且训练时消耗的gpu算力也会小一些一,安装(推荐在linux中训练,win可以用wsl+docker)gitclonehttps://github.com/hiyouga/LLaMA-Factory.gitcdLLaMA-Factory#根据cuda版本选择安装pytoch版本pip3installtor
- llama-factory微调
AI Echoes
深度学习人工智能机器学习deepseek
大模型微调实操--llama-factoryllama-factory环境安装前置准备英伟达显卡驱动更新地址下载NVIDIA官方驱动|NVIDIAcuda下载安装地址CUDAToolkit12.2Downloads|NVIDIADeveloperpytorch下载安装地址PreviousPyTorchVersions|PyTorchllama-factory项目和文档地址https://githu
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- unitree
Matrixart
ubuntu
Unitreeubuntu18.04首先要安装好ubuntu18.04系统,然后开始安装显卡驱动和cuda以及cudnn,这里要注意版本对应,我是3090的显卡,安装的显卡版本是520,然后cuda的版本是11.7,cudnn的版本是8.5.0(要对应cuda版本)。具体流程可以按照1里面的走,最后记得在环境中写一下#写入环境sudogedit~/.bashrcexportPATH=/usr/lo
- LVI-SAM、VINS-Mono、LIO-SAM算法的阅读参考和m2dgr数据集上的复现(留作学习使用)
再坚持一下!!!
学习
ROS一键安装参考:ROS的最简单安装——鱼香一键安装_鱼香ros一键安装-CSDN博客opencv官网下载4.2.0参考:https://opencv.org/releases/page/3/nvidia驱动安装:ubuntu18.04安装显卡驱动-开始战斗-博客园cuda搭配使用1+2cuda安装1:Ubuntu18.04下安装CUDA_ubuntu18.04安装cuda-CSDN博客cuda
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- vllm部署说明和注意事项
ai一小生
python人工智能持续部署
1、vllm所在docker镜像可去vllm官网提供的镜像地址拉取地址:UsingDocker—vLLMVllm镜像运行需要不同的cuda版本依赖,如上vllm/vllm-openai:v0.7.2需要cuda12.1方可运行。DeepSeek-R1-Distill-Qwen-32B可去modelscope下载:整体大小约为60GB部署DeepSeek-R1-Distill-Qwen-32B模型,
- CUDA内核调优工具ncu的详细使用教程
东北豆子哥
CUDA数值计算/数值优化linux高性能计算
NVIDIANsightCompute(ncu)是一款用于CUDA内核性能分析的工具,帮助开发者优化CUDA程序。以下是详细的使用教程和示例说明。1.安装NVIDIANsightCompute确保已安装CUDAToolkit和NVIDIA驱动,然后从NVIDIA官网下载并安装NsightCompute。2.基本使用2.1启动ncu通过命令行启动ncu,基本语法如下:ncu[options][app
- 麒麟银河桌面版,成功安装cuda12.6,mysql
hitsz_syl
mysql银河麒麟cuda
一、要卸载并禁用nouveau驱动程序,可以按照以下步骤进行:1.确认nouveau驱动的当前状态:首先,你可以使用以下命令查看nouveau驱动是否正在运行:lsmod|grepnouveau如果有输出,说明nouveau驱动正在加载。2.临时禁用nouveau驱动:可以使用modprobe命令来临时禁用nouveau驱动(重启后会恢复加载):sudomodprobe-rnouveau3.永久禁
- mysql创建新表,同步数据
hitsz_syl
mysql数据库
importosimportargparseimportglobimportcv2importnumpyasnpimportonnxruntimeimporttqdmimportpymysqlimporttimeimportjsonfromdatetimeimportdatetimeos.environ[“CUDA_VISIBLE_DEVICES”]=“0”#使用GPU0defget_connec
- 如何测试模型的推理速度
想要躺平的一枚
AI图像算法计算机视觉
前言模型的推理速度测试有两种方式:一种是使用python的时间戳time函数来记录,另一种是使用Pytorch里的Event。同时,在进行GPU测试时,为减少冷启动的状态影响,可以先进行预热。代码如下(示例):if__name__=="__main__":model=BiSeNet(backbone='STDCNet813',n_classes=2,export=True)model.cuda()
- NVIDIA下载老版本驱动/CUDA/Video Codec SDK的链接,以及一些解码参数说明
landihao
linux
NVIDIA下载老版本驱动/CUDA/VideoCodecSDK的链接从别的网站抄过来的CUDA:https://developer.nvidia.com/cuda-toolkit-archive老驱动:https://www.nvidia.cn/geforce/drivers/VideoCodecSDKhttps://developer.nvidia.com/video-codec-sdk-ar
- PyTorch 环境搭建全攻略:CUDA/cuDNN 配置与多版本管理技巧
小诸葛IT课堂
pytorch人工智能python
一、环境搭建前的准备工作1.硬件兼容性检测#检查NVIDIAGPU型号nvidia-smi#验证CUDA支持的ComputeCapabilitylspci|grep-invidia#查看CUDA版本兼容性矩阵https://developer.nvidia.com/cuda-gpus2.系统环境要求组件推荐配置最低要求操作系统Ubuntu20.04LTSWindows10/11显卡驱动NVIDIA
- CMake Error at myplugins_generated_yololayer.cu.o.Debug,tensorrtx编译失败解决
雪可问春风
BUG人工智能
system:ubuntu1804gpu:3060cuda:cuda11.4tensorrt:8.4使用项目tensorrtx进行yolov5的engine生成,之前在编译成功的配置为system:ubuntu1804gpu:2060cuda:cuda10.2tensorrt:7.2.3.4换到3060后,make失败,报错错误:/home/yfzx/work/vs-work/tensorrt-y
- 大模型的webui
Zain Lau
人工智能python昇腾Ascend天数
exportXXX_LLM_C=~/xcore-llm/build/ReleaseexportCUDA_VISIBLE_DEVICES=2,3exportCUDACXX=/usr/local/cuda-12.3/bin/nvccnohup/usr/bin/python3/home/src/api_server/api_server.py--modelLLama2:7b-chat-hf_A800--
- linux(ubuntu)中Conda、CUDA安装Xinference报错ERROR: Failed to build (llama-cpp-python)
小胡说技书
杂谈/设计模式/报错Data/Python/大模型linuxubuntuconda大模型pythonXinference
文章目录一、常规办法二、继续三、继续四、缺少libgomp库(最终解决)在Conda环境中安装libgomp如果符合标题情况执行的:pipinstall"xinference[all]"大概率是最终解决的情况。一、常规办法llama-cpp-python依赖CMake、Make和g++来编译,所以可能是缺少依赖或者环境配置不对。按照以下步骤排查问题并解决:1.确保Python版本符合要求llama
- c++调用python代码,使用gpu
AI改变视界
c++python开发语言
c++调用python,使用gpu加速1、首先要配置cuda和cudnn的环境1、cmd窗口下nvidia-smi,查看电脑可以支持的最高cuda版本。如果nvidia-smi报错,那么需要去配置一下环境,网上有类似案例。或者通过NVIDIA控制面板/系统信息/组件里查看cuda_xxxx.dll,上面有版本号。2、保证安装的cuda版本要小于电脑支持的版本号。我电脑最大支持cuda11,但是安装
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 深度学习-服务器训练SparseDrive过程记录
weixin_40826634
深度学习服务器人工智能
1、cuda安装1.1卸载安装失败的cuda参考:https://blog.csdn.net/weixin_40826634/article/details/127493809注意:因为/usr/local/cuda-xx.x/bin/下没有卸载脚本,很可能是apt安装的,所以通过执行下面的命令删除:apt-get--purgeremove"cuda*"apt-getautoremove然后执行f
- RTX4090性能释放与优化全攻略
智能计算研究中心
其他
内容概要作为NVIDIAAdaLovelace架构的巅峰之作,RTX4090凭借24GBGDDR6X显存与16384个CUDA核心,重新定义了4K光追游戏的性能边界。本文将从硬件特性与软件优化双重视角切入,系统解析其性能释放路径:首先通过3DMarkTimeSpyExtreme压力测试数据(99.3%稳定性得分)验证基础算力;其次结合DLSS3.0帧生成技术与Reflex低延迟模式,实测《赛博朋克
- 嵌入式人工智能应用- 第七章 人脸识别
数贾电子科技
嵌入式人工智能应用人工智能
嵌入式人工智能应用`文章目录嵌入式人工智能应用1人脸识别1.1dlib介绍1.2dlib特点1.3dlib的安装与编译2人脸识别原理2.1ResNet3代码部署3.1安装[CUDAToolkit12.8](https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubunt
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- 保姆级教学——本地免费部署DeepSeek-R1模型并通过Python调用
shuaige_shiwoa
python+AIpython开发语言AI编程ai
以下是如何在本地免费部署DeepSeek-R1模型并通过Python调用的详细指南:一、环境准备(Windows/Linux/Mac通用)1.硬件要求最低配置:16GB内存+20GB可用磁盘空间推荐配置:NVIDIAGPU(显存≥8GB)+CUDA11.8(CPU模式支持但速度较慢)2.软件依赖#创建虚拟环境(可选但推荐)condacreate-ndeepseekpython=3.10condaa
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- 查看自己某个conda环境的Python版本的方法
小剧场的阿刁
condapythonwindows
首先打开conda的命令行输入:condaenvlist1查看自己有哪些环境。再输入:activateCUDA90_torch110_tf1901激活环境。再输入:python-V#注意V是大写1
- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s