Adaptation for Neural Machine Translation

目标:7月把NMT adaptation文章通读下

场景:假设储备了大量新闻领域双语语料,少量科技领域双语语料(或者没有),科技领域单语语料(大量、少量或者没有)的大菜鸟翻译公司,接到一个科技领域的翻译项目。如何使用现有资源去尽可能的把科技领域的翻译做好。

问题:这里的科技领域就是in-domain,新闻领域是out-domain。如何使用数量有限的in-domain parallel corpus和相对丰富的out-domain parallel corpus来更好地提升in-domain translation performance。

论文阅读:

1. A Survey of Domain Adaptation for Neural Machine Translation

https://arxiv.org/pdf/1806.00258.pdf

文章给做了个简单的归类:

1. Data Centric

  • Using Monolingual Corpora
  • Synthetic Paralle Corpora Generation
  • Using Out-of-Domain Parallel Corpora
    • Multi-Domain
    • Data Selection  

2. Model Centric

  • Training Objective Centric
    • Instance/Cost Weighting
    • Fine Tuning
    • Mixed Fine Tuning
    • Regularization
  • Architecture Centric
    • Deep Fusion
    • Domain Discriminator
    • Domain Control
  • Decoding Centric
    • Shallow Fusion
    • Ensembling
    • Neural Lattice Search

关于Data Centric,第三个Using Out-of-Domain Parallel Corpura好理解,在使用out-domain parallel corpus时候,如果是所有的out-domain data带有区分性地使用起来,就是Multi-Domain,如果只是使用某种标准对out-domain parallel corpus中的data进行挑选使用,则是Data Selection。

关于Model Centric,分别在训练阶段(Training)、解码阶段(Decoding)和模型结构上(Architecture Centric)进行相应的调整。感觉比较有意思的是Domain Discriminator,Encoder后面分别挂一个负责target sentence generation的decoder和一个负责predict source domain的Discriminator。借助Discriminator来帮助Encoder捕获domain information。

2. Sentence Selection and Weighting for Neural Machine Translation Domain Adaptation

https://ieeexplore.ieee.org/abstract/document/8360031/

 

3. Document-Level Adaptation for Neural Machine Translation

   http://www.aclweb.org/anthology/W18-2708

 

4. Instance Weighting for Neural Machine Translation Domain Adaptation

http://www.aclweb.org/anthology/D/D17/D17-1155.pdf

 

5. An Empirical Comparison of Simple Domain Adaptation Methods for Neural Machine Translation

https://arxiv.org/pdf/1701.03214.pdf

 

6. Multi-Domain Neural Machine Translation through Unsupervised Adaptation

http://www.aclweb.org/anthology/W/W17/W17-4713.pdf

 

7. Dynamic Data Selection for Neural Machine Translation

https://arxiv.org/pdf/1708.00712.pdf

 

8. Cost weighting for neural machine translation domain adaptation

http://www.aclweb.org/anthology/W17-3205

你可能感兴趣的:(NLP,NMT)