词嵌入向量WordEmbedding的原理和生成方法

转自:https://www.sohu.com/a/210757729_826434

词嵌入向量WordEmbedding的原理和生成方法_第1张图片

WordEmbedding

词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单词转换成固定长度的向量表示,从而便于进行数学处理。本文将介绍WordEmbedding的使用方式,并讲解如何通过神经网络生成WordEmbedding。

WordEmbedding的使用

使用数学模型处理文本语料的第一步就是把文本转换成数学表示,有两种方法,第一种方法可以通过one-hot矩阵表示一个单词,one-hot矩阵是指每一行有且只有一个元素为1,其他元素都是0的矩阵。针对字典中的每个单词,我们分配一个编号,对某句话进行编码时,将里面的每个单词转换成字典里面这个单词编号对应的位置为1的one-hot矩阵就可以了。比如我们要表达“the cat sat on the mat”,可以使用如下的矩阵表示。

词嵌入向量WordEmbedding的原理和生成方法_第2张图片

one-hot矩阵表示法

one-hot表示方式很直观,但是有两个缺点,第一,矩阵的每一维长度都是字典的长度,比如字典包含10000个单词,那么每个单词对应的one-hot向量就是1X10000的向量,而这个向量只有一个位置为1,其余都是0,浪费空间,不利于计算。第二,one-hot矩阵相当于简单的给每个单词编了个号,但是单词和单词之间的关系则完全体现不出来。比如“cat”和“mouse”的关联性要高于“cat”和“cellphone”,这种关系在one-hot表示法中就没有体现出来。

WordEmbedding解决了这两个问题。WordEmbedding矩阵给每个单词分配一个固定长度的向量表示,这个长度可以自行设定,比如300,实际上会远远小于字典长度(比如10000)。而且两个单词向量之间的夹角值可以作为他们之间关系的一个衡量。如下表示:

词嵌入向量WordEmbedding的原理和生成方法_第3张图片

WordEmbedding表示法

通过简单的余弦函数,我们就可以计算两个单词之间的相关性,简单高效:

词嵌入向量WordEmbedding的原理和生成方法_第4张图片

两个向量相关性计算

因为WordEmbedding节省空间和便于计算的特点,使得它广泛应用于NLP领域。接下来我们讲解如何通过神经网络生成WordEmbedding。

WordEmbedding的生成

WordEmbedding的生成我们使用tensorflow,通过构造一个包含了一个隐藏层的神经网络实现。

下面是下载数据和加载数据的代码,一看就懂。训练数据我们使用的是http://mattmahoney.net/dc/enwik8.zip数据,里面是维基百科的数据。

接下来是如何构建训练数据。构建训练数据主要包括统计词频,生成字典文件,并且根据字典文件给训练源数据中的单词进行编号等工作。我们生成的字典不可能包含所有的单词,一般我们按照单词频率由高到低排序,选择覆盖率大于95%的单词加入词典就可以了,因为词典越大,覆盖的场景越大,同时计算开销越大,这是一个均衡。下面的代码展示了这个过程,首先统计所有输入语料的词频,选出频率最高的10000个单词加入字典。同时在字典第一个位置插入一项“UNK"代表不能识别的单词,也就是未出现在字典的单词统一用UNK表示。然后给字典里每个词编号,并把源句子里每个词表示成在字典中的编号。我们可以根据每个词的编号查找WordEmbedding中的向量表示。

接下来我们看一下如何将源句子转换成训练过程的输入和输出,这一步是比较关键的。有两种业界常用的WordEmbedding生成方式,Continuous Bag Of Words (CBOW)方法和n-gram方法,我们采用n-gram方法。训练的目的是获得能够反映任意两个单词之间关系的单词向量表示,所以我们的输入到输出的映射也要翻译两个单词之间的关联。n-gram的思路是将所有的源句子按固定长度(比如128个单词)分割成很多batch。对于每个batch,从前往后每次选取长度为skip_window的窗口(我们设定skip_window=5)。对于窗口中的5个单词,我们生成两个source-target数据对,这两个source-target对的source都是窗口中间的单词,也就是第三个单词,然后从另外四个单词中随机选取两个作为两个target单词。然后窗口向后移动一个单词,每次向后移动一个位置获取下5个单词,一共循环64次,获取到64X2=128个source-target对,作为一个batch的训练数据。总的思路就是把某个单词和附近的单词组对,作为输入和输出。这里同一个source单词,会被映射到不同的target单词,这样理论上可以获取任意两个单词之间的关系。

比如对于句子"cat and dog play balls on the floor",第一个窗口就是“cat and dog play balls",生成的两个source-target对可能是下面中的任意两个:dog -> catdog -> anddog -> ballsdog -> play

第二个窗口是"and dog play balls on",生成的两个source-target对可能是下面中的任意两个:play -> andplay -> ballsplay -> dogplay -> on

接下来是构建神经网络的过程,我们构建了一个包含一个隐藏层的神经网络,该隐藏层包含300个节点,这个数量和我们要构造的WordEmbedding维度一致。

我们首先随机初始化embeddings矩阵,通过tf.nn.embedding_lookup函数将输入序列转换成WordEmbedding表示作为隐藏层的输入。初始化weights和biases,计算隐藏层的输出。然后计算输出和target结果的交叉熵,使用GradientDescentOptimizer完成一次反向传递,更新可训练的参数,包括embeddings变量。在Validate过程中,对测试数据集中的单词,利用embeddings矩阵计算测试单词和所有其他单词的相似度,输出相似度最高的几个单词,看看它们相关性如何,作为一种验证方式。

通过这个神经网络,就可以完成WordEmbedding的训练,继而应用于其他NLP的任务。

你可能感兴趣的:(深度学习)