1. Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data
-
- arxiv: http://arxiv.org/abs/1312.4740
- paper: http://legacy.openreview.net/document/90fc8dad-ad02-4ddc-ab06-e7b55706869d#90fc8dad-ad02-4ddc-ab06-e7b55706869d
2.Neural Codes for Image Retrieval
-
- project page: http://sites.skoltech.ru/compvision/projects/neuralcodes/
- arxiv: http://arxiv.org/abs/1404.1777
- github: https://github.com/arbabenko/Spoc
3.Efficient On-the-fly Category Retrieval using ConvNets and GPUs
-
- arxiv: http://arxiv.org/abs/1407.4764
4.Deep Learning of Binary Hash Codes for Fast Image Retrieval
-
- intro: CVPR Workshop 2015
- intro: MNIST, CIFAR-10, Yahoo-1M
- paper: http://www.iis.sinica.edu.tw/~kevinlin311.tw/cvprw15.pdf
- github: https://github.com/kevinlin311tw/caffe-cvprw15
5.Learning visual similarity for product design with convolutional neural networks
-
- intro: SIGGRAPH 2015
- paper: http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf
- paper: http://dl.acm.org.sci-hub.cc/citation.cfm?doid=2809654.2766959
6.Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval
-
- intro: CVPR 2015
- arxiv: http://arxiv.org/abs/1501.06272
7.Exploiting Local Features from Deep Networks for Image Retrieval
-
- intro: CVPR DeepVision Workshop 2015
- arxiv: https://arxiv.org/abs/1504.05133
8.Supervised Learning of Semantics-Preserving Hashing via Deep Neural Networks for Large-Scale Image Search
-
- intro: SSDH
- arxiv: http://arxiv.org/abs/1507.00101
- github: https://github.com/kevinlin311tw/Caffe-DeepBinaryCode
9.Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network
-
- intro: ICCV 2015
- intro: DARN, cross-entropy loss, triplet loss
- arxiv: http://arxiv.org/abs/1505.07922
10.Aggregating Deep Convolutional Features for Image Retrieval
-
- intro: ICCV 2015
- intro: Sum pooing
- arxiv: http://arxiv.org/abs/1510.07493
11.Feature Learning based Deep Supervised Hashing with Pairwise Labels
-
- intro: IJCAI 2016
- arxiv: http://arxiv.org/abs/1511.03855
- code: http://cs.nju.edu.cn/lwj/code/DPSH_code.rar
12.Particular object retrieval with integral max-pooling of CNN activations
-
- intro: use max-pooling to aggregate the deep descriptors, R-MAC (regional maximum activation of convolutions)
- arxiv: https://arxiv.org/abs/1511.05879
Group Invariant Deep Representations for Image Instance Retrieval
- arxiv: http://arxiv.org/abs/1601.02093
13.Where to Buy It: Matching Street Clothing Photos in Online Shops
-
- intro: ICCV 2015
- hmepage: http://www.tamaraberg.com/street2shop/
- paper: http://www.tamaraberg.com/papers/street2shop.pdf
- paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Kiapour_Where_to_Buy_ICCV_2015_paper.html
14.Deep Image Retrieval: Learning global representations for image search
-
- intro: ECCV 2016
- project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
- arxiv: https://arxiv.org/abs/1604.01325
- slides: http://www.slideshare.net/xavigiro/deep-image-retrieval-learning-global-representations-for-image-search
15.Bags of Local Convolutional Features for Scalable Instance Search
-
- intro: ICMR 2016. Best Poster Award at ICMR 2016.
- project page: https://imatge-upc.github.io/retrieval-2016-icmr/
- arxiv: https://arxiv.org/abs/1604.04653
- github: https://github.com/imatge-upc/retrieval-2016-icmr
- slides: http://www.slideshare.net/xavigiro/convolutional-features-for-instance-search
16.Faster R-CNN Features for Instance Search
-
- intro: DeepVision Workshop in CVPR 2016
- homepage: http://imatge-upc.github.io/retrieval-2016-deepvision/
- arxiv: http://arxiv.org/abs/1604.08893
- github: https://github.com/imatge-upc/retrieval-2016-deepvision
17.Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
-
- intro: CVPR 2016. DeepBit
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Learning_Compact_Binary_CVPR_2016_paper.pdf
- github: https://github.com/kevinlin311tw/cvpr16-deepbit
18.Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles
-
- intro: CVPR 2016
- intro: vehicle re-identification, vehicle retrieval. coupled clusters loss
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Relative_Distance_CVPR_2016_paper.pdf
19.DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations
-
- intro: CVPR 2016. FashionNet
- project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/DeepFashion.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.pdf
20.CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
-
- intro: ECCV 2016
- project page(paper+code+data): http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html
- arxiv: https://arxiv.org/abs/1604.02426
- paper: http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-ECCV16.pdf
- code(Matlab): http://ptak.felk.cvut.cz/personal/radenfil/siamac/siaMAC_code.tar.gz
21.SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval
- arxiv: http://arxiv.org/abs/1607.08477
22.Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval
-
- intro: Microsoft
- paper: http://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/Deep-Semantic-Preserving-and-Ranking-Based-Hashing-for-Image-Retrieval.pdf
23.SIFT Meets CNN: A Decade Survey of Instance Retrieval
- arxiv: http://arxiv.org/abs/1608.01807
24.Deep Hashing: A Joint Approach for Image Signature Learning
- arxiv: http://arxiv.org/abs/1608.03658
25.End-to-end Learning of Deep Visual Representations for Image Retrieval
-
- intro: ECCV 2016
- project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
- arxiv: https://arxiv.org/abs/1610.07940