LeetCode 327. Count of Range Sum

题目

Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.
Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.

解法

因为我们要用排序来优化求解过程,但是排序之后的数组是不能用来求解的,这样我们就采用归并排序的思想,在排序之前求出左右两边数组的个数,然后再求整体的。
这里我们的排序对象是前缀求和数组,在归并排序的合并阶段,我们有左数组和右数组,且左和右数组都是排好序的,所以我们可以用i遍历左数组,j,k两个指针分别取在右数组搜索,使得:

sums[j] - sums[i] < upper
sums[k] - sums[i] >= lower
那么此时,我们就找到了j-k个符合要求的子数组。

由于左右数组都是排好序的,所以当i递增之后,j和k的位置不用从头开始扫描。

最后还有一点需要注意的就是,为了防止溢出,我们的vector容纳的是long long型元素。

代码

class Solution {
public:
    long long sum[100000];
    long long tmp[100000];
    int gao( int st, int ed, int lower, int upper ){
        if( st >= ed )  return 0;

        int mid = st + ( ed - st ) / 2;
        int cnt = gao( st, mid, lower, upper ) + gao( mid + 1, ed, lower, upper );
        int j = mid + 1, k = mid + 1;
        for( int i = st; i <= mid; i++ ){
            while( j <= ed && sum[j] - sum[i] <= upper )    j++;
            while( k <= ed && sum[k] - sum[i] < lower ) k++;
            cnt += j - k;
        }
        int p = st, q = mid + 1, t = st;
        while( p <= mid && q <= ed ){
            if( sum[p] <= sum[q] ){
                tmp[t++] = sum[p++];
            }else{
                tmp[t++] = sum[q++];
            }
        }
        while( p <= mid ){
            tmp[t++] = sum[p++];
        }
        while( q <= ed ){
            tmp[t++] = sum[q++];
        }
        for( int i = st; i <= ed; i++ ){
            sum[i] = tmp[i];
        }
        return cnt;
    }

    int countRangeSum(vector<int>& nums, int lower, int upper) {
        sum[0] = 0;
        for( int i = 0; i < (int)nums.size(); i++ ){
            sum[i+1] = sum[i] + nums[i];
        }
        return gao( 0, (int)nums.size(), lower, upper );
    }
};

你可能感兴趣的:(====算法与数据结构====,LeetCode)