tensorflow 单机多卡示例--数据并行

本文参考自官方的cifar10分类示例:
[url]https://www.tensorflow.org/tutorials/deep_cnn/[/url]

多机多卡(未验证):
[list]
[*][url]http://blog.csdn.net/cq361106306/article/details/52929468[/url]
[*][url]http://weibo.com/ttarticle/p/show?id=2309404005132982440427[/url]
[/list]

本文只保留了必要的代码, 更适合于概念的理解。

在tensorflow中,变量是复用的,变量通过变量名唯一确定。
计算图也会和设备绑定,如果一个图计算时需要用到变量a,而变量a不在该设备上,则会自动生成相应的通信代码,将变量a加载到该设备上。因而,变量的存放设备对于程序的正确性没有影响,但会导致通信开销有所差异。


测试结果: 对于全连接网络,通信开销占比大,,,单卡最为理想。。。
网络大小:输入2000*600, 中间层: 512, 128, 128, 1
运行时间:单位:秒
[img]http://dl2.iteye.com/upload/attachment/0122/4125/fbe13a1d-cfd4-3e7d-a430-9c8e29a74f09.png[/img]


# coding=utf-8
'''
Created on Jan 4, 2017
@author: colinliang

tensorflow 单机多卡程序示例,
参考: tensorflow示例cifar10_multi_gpu_train.py
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np

def _allocate_variable(name, shape, initializer, dtype=tf.float32):
# 分配变量,Tensorflow 会自动处理变量在不同设备间的通信问题,因而可以放在GPU上,也可以放在CPU上
# 如果是单机单卡,都放在GPU上比较快 (无需显式指定device, tf自动分配即可)
# 如果是单机多卡,则放在CPU上略快; 可能是我这里使用了SLI连接两块GPU,GPU间通信速度还算可以
with tf.device('/cpu:0'): #强制放在主内存上
# with tf.device(None): # 默认放在当前设备上
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
print('%s: %s' % (var.op.name, var.device))
return var

# 创建网络 y=xw+b
def tower(input_tensor, target_tensor, scope, dims=[]):
for i, d in enumerate(dims):
with tf.variable_scope('affine%d' % i) as varscope: # 仅仅用于生成变量的全名,与存放设备无关
w = _allocate_variable('w', shape=[input_tensor.get_shape()[1], d], initializer=tf.truncated_normal_initializer(0, 1));
b = _allocate_variable('b', shape=[], initializer=tf.zeros_initializer);
input_tensor = tf.matmul(input_tensor, w) + b;
input_tensor = tf.nn.relu(input_tensor)

with tf.variable_scope('affine_last') as varscope: # 仅仅用于生成变量的全名,与存放设备无关
# w = _allocate_variable('w', shape=[input_tensor.get_shape()[1], 1], initializer=tf.truncated_normal_initializer(0, 1));
w = _allocate_variable('w', shape=[input_tensor.get_shape()[1], 1], initializer=tf.constant_initializer(value=1));
b = _allocate_variable('b', shape=[], initializer=tf.zeros_initializer);

y = tf.matmul(input_tensor, w) + b;
l = tf.reduce_mean(tf.square(y - target_tensor));
tf.add_to_collection('losses', l)
return y, l

# 合并所有tower上的梯度,取平均, 对于单机多卡程序,这段代码是通用的
def average_tower_grads(tower_grads):
print('towerGrads:')
idx = 0
for grads in tower_grads: # grads 为 一个list,其中元素为 梯度-变量 组成的二元tuple
print('grads---tower_%d' % idx)
for g_var in grads:
print(g_var)
print('\t%s\n\t%s' % (g_var[0].op.name, g_var[1].op.name))
# print('\t%s: %s'%(g_var[0].op.name,g_var[1].op.name))
idx += 1

if(len(tower_grads) == 1):
return tower_grads[0]
avgGrad_var_s = []
for grad_var_s in zip(*tower_grads):
grads = []
v = None
for g, v_ in grad_var_s:
g = tf.expand_dims(g, 0)
grads.append(g)
v = v_
all_g = tf.concat(0, grads)
avg_g = tf.reduce_mean(all_g, 0, keep_dims=False)
avgGrad_var_s.append((avg_g, v));
return avgGrad_var_s

# 方案1 ,每组输入分别用对应的placeholder作为输入; 未测试
def generate_towers_v1(NUM_GPU=2):

input_tensors = []
target_tensors = []

towerGrads = []
lr = 1e-3
opt = tf.train.AdamOptimizer(lr)

for i in range(NUM_GPU):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
input_tensor = tf.placeholder(tf.float32, shape=[None, 1], name='input_%d' % i);
input_tensors.append(input_tensor)
target_tensor = tf.placeholder(tf.float32, shape=[None, 1], name='target_%d' % i);
target_tensors.append(target_tensor)
y, loss = tower(input_tensor=input_tensor, target_tensor=target_tensor, scope=scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
grads = opt.compute_gradients(loss)
towerGrads.append(grads)
avgGrad_var_s = average_tower_grads(towerGrads)
apply_gradient_op = opt.apply_gradients(avgGrad_var_s, global_step=None)
loss = tf.Print(loss, data=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
return input_tensors, target_tensors, y, loss, apply_gradient_op

# 方案2: 一组placeholder, 再根据tower数量分割成n组输入,分别送人对应的tower
def generate_towers_v2(NUM_GPU=2, dim_in=1, dims=None, batch_size=None):
if(dims is None): dims = []

input_tensor = tf.placeholder(tf.float32, shape=[batch_size, dim_in], name='input');
target_tensor = tf.placeholder(tf.float32, shape=[batch_size, dim_in], name='target');
input_tensors = tf.split(0, NUM_GPU, input_tensor) # batch_size必须可以被dim_in整除
target_tensors = tf.split(0, NUM_GPU, target_tensor)

towerGrads = []
lr = 1e-2
opt = tf.train.AdamOptimizer(lr) # 与GradientDescentOptimizer相比,会自动分配一些中间变量
opt = tf.train.GradientDescentOptimizer(lr)
for i in range(NUM_GPU):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
input_sub = input_tensors[i]
print("device:%s" % input_sub.device)
target_sub = target_tensors[i]
y, loss = tower(input_tensor=input_sub, target_tensor=target_sub, scope=scope, dims=dims)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
grads = opt.compute_gradients(loss)
towerGrads.append(grads)
avgGrad_var_s = average_tower_grads(towerGrads)
loss = tf.Print(loss, data=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))

apply_gradient_op = opt.apply_gradients(avgGrad_var_s, global_step=None)

print('ALL variables:')
for v in tf.all_variables():
print('\t%s' % v.op.name)

return input_tensor, target_tensor, y, loss, apply_gradient_op

if __name__ == '__main__':
sess = tf.Session()
NUM_GPU = 1 # 由于只有两块GPU,如果设为3,会报错:Could not satisfy explicit device specification '/device:GPU:2'
dim_in = 600; # 输入变量x 的维度
dims = [512, 128, 128] #隐层单元数,设置为[]时表示 y=xw+b的线性变换,否则表示多层的全连接网络
batch_size = 2000;

input_tensor, target_tensor, y, loss, apply_gradient_op = generate_towers_v2(NUM_GPU=NUM_GPU, dim_in=dim_in, dims=dims)
sess.run(tf.initialize_all_variables())

inputs = np.random.rand(batch_size, dim_in)
targets = inputs * 2 + 1;
feed_dict = {input_tensor:inputs, target_tensor:targets}

import time
tstart = time.time()
for i in range(10000):
# _, l = sess.run([apply_gradient_op, loss], feed_dict=feed_dict) #will print w, b
# print(l)
sess.run([apply_gradient_op], feed_dict=feed_dict) # do not print w, b
telapse = time.time() - tstart
print(u'%d块GPU用时: %.2fs' % (NUM_GPU, telapse))


示例输出:
[quote]affine0/w: /device:CPU:0
affine0/b: /device:CPU:0
affine1/w: /device:CPU:0
affine1/b: /device:CPU:0
affine2/w: /device:CPU:0
affine2/b: /device:CPU:0
affine_last/w: /device:CPU:0
affine_last/b: /device:CPU:0
towerGrads:
grads---tower_0
(, )
tower_0/gradients/tower_0/MatMul_grad/tuple/control_dependency_1
affine0/w
(, )
tower_0/gradients/tower_0/add_grad/tuple/control_dependency_1
affine0/b
(, )
tower_0/gradients/tower_0/MatMul_1_grad/tuple/control_dependency_1
affine1/w
(, )
tower_0/gradients/tower_0/add_1_grad/tuple/control_dependency_1
affine1/b
(, )
tower_0/gradients/tower_0/MatMul_2_grad/tuple/control_dependency_1
affine2/w
(, )
tower_0/gradients/tower_0/add_2_grad/tuple/control_dependency_1
affine2/b
(, )
tower_0/gradients/tower_0/MatMul_3_grad/tuple/control_dependency_1
affine_last/w
(, )
tower_0/gradients/tower_0/add_3_grad/tuple/control_dependency_1
affine_last/b
ALL variables:
affine0/w
affine0/b
affine1/w
affine1/b
affine2/w
affine2/b
affine_last/w
affine_last/b
[/quote]

你可能感兴趣的:(神经网络,tensorflow)