感知器--代码实现

import numpy as np
from functools import reduce


class Perceptron(object):
    def __init__(self, input_num, activator):
        self.activator = activator
        self.weights = [0.0 for _ in range(input_num)]
        self.bias = 0.0

    def __str__(self):
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)


    def predict(self, input_vec):
        return self.activator(
            reduce(lambda a, b: a + b, [x_w[0] * x_w[1] for x_w in zip(input_vec, self.weights)], 0.0) + self.bias)

    def train(self, input_vecs, labels, iteration, rate):
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)

    def _one_iteration(self, input_vecs, labels, rate):
        samples = list(zip(input_vecs, labels))

        for (input_vec, label) in samples:
            output = self.predict(input_vec)
            self._update_weights(input_vec, output, label, rate)

    def _update_weights(self, input_vec, output, label, rate):
        delta = label - output
        self.weights = [x_w1[1] + rate * delta * x_w1[0] for x_w1 in zip(input_vec, self.weights)]
        self.bias += rate * delta


def f(x):
    return 1 if x > 0 else 0


def get_training_dataset():
    input_vecs = [[1,1], [0,0], [1,0], [0,1]]
    labels = [1, 0, 0, 0]
    return input_vecs, labels    


def train_and_perceptron():

    p = Perceptron(2, f)
    input_vecs, labels = get_training_dataset()
    p.train(input_vecs, labels, 10, 0.1)
    return p


if __name__ == '__main__': 
    and_perception = train_and_perceptron()
    print (and_perception)
    print ('1 and 1 = %d' % and_perception.predict([1, 1]))
    print ('0 and 0 = %d' % and_perception.predict([0, 0]))
    print ('1 and 0 = %d' % and_perception.predict([1, 0]))
    print ('0 and 1 = %d' % and_perception.predict([0, 1]))


你可能感兴趣的:(机器学习)