上文 【对抗机器学习——FGSM经典论文 EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES】在理论层面介绍了Fast gradient Sign Method 是如何寻找对抗样本的。它的核心思想是假设神经网络最后的目标函数 J ( θ , x , y ) J(\theta,x,y) J(θ,x,y)与 输入x 直接存在着近似的线性关系,然后在 L ∞ ( x , x + δ ) < ϵ L_{\infty}(x,x+\delta)<\epsilon L∞(x,x+δ)<ϵ约束下,让 x x x 沿着 梯度方向 ∇ x J ( θ , x , y ) \nabla_{x} J(\theta,x,y) ∇xJ(θ,x,y) 增加,使得目标损失函数变大。
本文就来实操一下这个FSGM方法。
Tensorflow已经出了官方的对抗机器学习库 cleverhans 。这个库里面集成了目前学术界提出的大部分对抗方法和防御方法。
cleverhans是基于Tensorflow的,因此安装它之前必须得安装tensorflow。
为了方便修改cleverhans的代码,便于观察中间结果,免去权限管理能麻烦问题,我们可以把代码下载到本地,然后修改PYTHONPATH环境变量,让python直接使用我们定制的代码。
wget https://github.com/tensorflow/cleverhans/archive/v.3.0.1.tar.gz
tar -xvf v.3.0.1.tar.gz
假设解压后cleverhans所在的目录为x/cleverhans-3.0.1,那么修改环境变量:
export PYTHONPATH=x/cleverhans-3.0.1:PYTHONPATH
代码:
"""
This tutorial shows how to generate adversarial examples using FGSM
and train a model using adversarial training with TensorFlow.
It is very similar to mnist_tutorial_keras_tf.py, which does the same
thing but with a dependence on keras.
The original paper can be found at:
https://arxiv.org/abs/1412.6572
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import flags
from cleverhans.loss import CrossEntropy
from cleverhans.dataset import MNIST
from cleverhans.utils_tf import model_eval
from cleverhans.train import train
from cleverhans.attacks import FastGradientMethod
from cleverhans.utils import AccuracyReport, set_log_level
from cleverhans_tutorials.tutorial_models import ModelBasicCNN
FLAGS = flags.FLAGS
NB_EPOCHS = 6
BATCH_SIZE = 128
LEARNING_RATE = 0.001
CLEAN_TRAIN = True
BACKPROP_THROUGH_ATTACK = False
NB_FILTERS = 64
def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
test_end=10000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
clean_train=CLEAN_TRAIN,
testing=False,
backprop_through_attack=BACKPROP_THROUGH_ATTACK,
nb_filters=NB_FILTERS, num_threads=None,
label_smoothing=0.1):
"""
MNIST cleverhans tutorial
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param clean_train: perform normal training on clean examples only
before performing adversarial training.
:param testing: if true, complete an AccuracyReport for unit tests
to verify that performance is adequate
:param backprop_through_attack: If True, backprop through adversarial
example construction process during
adversarial training.
:param label_smoothing: float, amount of label smoothing for cross entropy
:return: an AccuracyReport object
"""
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Create TF session
if num_threads:
config_args = dict(intra_op_parallelism_threads=1)
else:
config_args = {}
sess = tf.Session(config=tf.ConfigProto(**config_args))
# Get MNIST data
mnist = MNIST(train_start=train_start, train_end=train_end,
test_start=test_start, test_end=test_end)
x_train, y_train = mnist.get_set('train')
x_test, y_test = mnist.get_set('test')
# Use Image Parameters
img_rows, img_cols, nchannels = x_train.shape[1:4]
nb_classes = y_train.shape[1]
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
nchannels))
y = tf.placeholder(tf.float32, shape=(None, nb_classes))
# Train an MNIST model
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate
}
eval_params = {'batch_size': batch_size}
fgsm_params = {
'eps': 0.2,
'clip_min': 0.,
'clip_max': 1.
}
rng = np.random.RandomState([2017, 8, 30])
def do_eval(preds, x_set, y_set, report_key, is_adv=None):
if is_adv==True:
acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params,debug=True)
elif is_adv==False:
acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
setattr(report, report_key, acc)
if is_adv is None:
report_text = None
elif is_adv:
report_text = 'adversarial'
else:
report_text = 'legitimate'
if report_text:
print('Test accuracy on %s examples: %0.4f' % (report_text, acc))
if clean_train:
model = ModelBasicCNN('model1', nb_classes, nb_filters)
preds = model.get_logits(x)
loss = CrossEntropy(model, smoothing=label_smoothing)
def evaluate():
do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)
train(sess, loss, x_train, y_train, evaluate=evaluate,
args=train_params, rng=rng, var_list=model.get_params())
# Calculate training error
if testing:
do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')
# Initialize the Fast Gradient Sign Method (FGSM) attack object and
# graph
fgsm = FastGradientMethod(model, sess=sess)
adv_x = fgsm.generate(x, **fgsm_params)
preds_adv = model.get_logits(adv_x)
# Evaluate the accuracy of the MNIST model on adversarial examples
do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True)
# Calculate training error
if testing:
do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')
return report
def main(argv=None):
from cleverhans_tutorials import check_installation
check_installation(__file__)
mnist_tutorial(nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
clean_train=FLAGS.clean_train,
backprop_through_attack=FLAGS.backprop_through_attack,
nb_filters=FLAGS.nb_filters)
if __name__ == '__main__':
flags.DEFINE_integer('nb_filters', NB_FILTERS,
'Model size multiplier')
flags.DEFINE_integer('nb_epochs', NB_EPOCHS,
'Number of epochs to train model')
flags.DEFINE_integer('batch_size', BATCH_SIZE,
'Size of training batches')
flags.DEFINE_float('learning_rate', LEARNING_RATE,
'Learning rate for training')
flags.DEFINE_bool('clean_train', CLEAN_TRAIN, 'Train on clean examples')
flags.DEFINE_bool('backprop_through_attack', BACKPROP_THROUGH_ATTACK,
('If True, backprop through adversarial example '
'construction process during adversarial training'))
tf.app.run()
跑这个代码就完事啦。
以下是一些对抗结果:
ϵ \epsilon ϵ | 攻击成功率 |
---|---|
0.4 | 97.5% |
0.3 | 91.2% |
0.2 | 66% |
0.1 | 23% |
0.08 | 8% |
0.06 | 5.1% |
一些对抗样本的logit:
realy: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]
predict: [0.21056737, -0.13243113, 0.51316774, 0.51515293, -0.22385997, -0.36223292, -0.28980073, -0.61583054, 0.5446904, -0.14677687]
realy: [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
predict: [0.0622759, -0.15177919, 0.28638932, 0.48950654, -0.22479388, 0.34589207, -0.0262568, -0.24448192, 0.38647628, 0.0044806357]
realy: [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
predict: [-0.048175618, -0.29588905, 0.6424468, 0.2426339, -0.08349679, -0.25063646, -0.2635439, -0.39338973, 0.80821, 0.10917343]
其实看这些输出,并没有出现对抗里面错误标签的置信度特别高的现象,因此论文里面提到的置信度这么高可能只是个恰合。