对抗机器学习——Fast gradient Sign Method的实践

上文 【对抗机器学习——FGSM经典论文 EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES】在理论层面介绍了Fast gradient Sign Method 是如何寻找对抗样本的。它的核心思想是假设神经网络最后的目标函数 J ( θ , x , y ) J(\theta,x,y) J(θ,x,y)与 输入x 直接存在着近似的线性关系,然后在 L ∞ ( x , x + δ ) < ϵ L_{\infty}(x,x+\delta)<\epsilon L(x,x+δ)<ϵ约束下,让 x x x 沿着 梯度方向 ∇ x J ( θ , x , y ) \nabla_{x} J(\theta,x,y) xJ(θ,x,y) 增加,使得目标损失函数变大。
本文就来实操一下这个FSGM方法。
Tensorflow已经出了官方的对抗机器学习库 cleverhans 。这个库里面集成了目前学术界提出的大部分对抗方法和防御方法。

cleverhans安装方法

cleverhans是基于Tensorflow的,因此安装它之前必须得安装tensorflow。

为了方便修改cleverhans的代码,便于观察中间结果,免去权限管理能麻烦问题,我们可以把代码下载到本地,然后修改PYTHONPATH环境变量,让python直接使用我们定制的代码。

wget https://github.com/tensorflow/cleverhans/archive/v.3.0.1.tar.gz
tar -xvf v.3.0.1.tar.gz

假设解压后cleverhans所在的目录为x/cleverhans-3.0.1,那么修改环境变量:

export PYTHONPATH=x/cleverhans-3.0.1:PYTHONPATH

代码:

"""
This tutorial shows how to generate adversarial examples using FGSM
and train a model using adversarial training with TensorFlow.
It is very similar to mnist_tutorial_keras_tf.py, which does the same
thing but with a dependence on keras.
The original paper can be found at:
https://arxiv.org/abs/1412.6572
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import logging
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import flags

from cleverhans.loss import CrossEntropy
from cleverhans.dataset import MNIST
from cleverhans.utils_tf import model_eval
from cleverhans.train import train
from cleverhans.attacks import FastGradientMethod
from cleverhans.utils import AccuracyReport, set_log_level
from cleverhans_tutorials.tutorial_models import ModelBasicCNN

FLAGS = flags.FLAGS

NB_EPOCHS = 6
BATCH_SIZE = 128
LEARNING_RATE = 0.001
CLEAN_TRAIN = True
BACKPROP_THROUGH_ATTACK = False
NB_FILTERS = 64


def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
                   test_end=10000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   clean_train=CLEAN_TRAIN,
                   testing=False,
                   backprop_through_attack=BACKPROP_THROUGH_ATTACK,
                   nb_filters=NB_FILTERS, num_threads=None,
                   label_smoothing=0.1):
  """
  MNIST cleverhans tutorial
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param clean_train: perform normal training on clean examples only
                      before performing adversarial training.
  :param testing: if true, complete an AccuracyReport for unit tests
                  to verify that performance is adequate
  :param backprop_through_attack: If True, backprop through adversarial
                                  example construction process during
                                  adversarial training.
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """

  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Set logging level to see debug information
  set_log_level(logging.DEBUG)

  # Create TF session
  if num_threads:
    config_args = dict(intra_op_parallelism_threads=1)
  else:
    config_args = {}
  sess = tf.Session(config=tf.ConfigProto(**config_args))

  # Get MNIST data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Use Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
  nb_classes = y_train.shape[1]

  # Define input TF placeholder
  x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
                                        nchannels))
  y = tf.placeholder(tf.float32, shape=(None, nb_classes))

  # Train an MNIST model
  train_params = {
      'nb_epochs': nb_epochs,
      'batch_size': batch_size,
      'learning_rate': learning_rate
  }
  eval_params = {'batch_size': batch_size}
  fgsm_params = {
      'eps': 0.2,
      'clip_min': 0.,
      'clip_max': 1.
  }
  rng = np.random.RandomState([2017, 8, 30])

  def do_eval(preds, x_set, y_set, report_key, is_adv=None):
    if is_adv==True:
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params,debug=True)
    elif is_adv==False:
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
    setattr(report, report_key, acc)
    if is_adv is None:
      report_text = None
    elif is_adv:
      report_text = 'adversarial'
    else:
      report_text = 'legitimate'
    if report_text:
      print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

  if clean_train:
    model = ModelBasicCNN('model1', nb_classes, nb_filters)
    preds = model.get_logits(x)
    loss = CrossEntropy(model, smoothing=label_smoothing)

    def evaluate():
      do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

    train(sess, loss, x_train, y_train, evaluate=evaluate,
          args=train_params, rng=rng, var_list=model.get_params())

    # Calculate training error
    if testing:
      do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

    # Initialize the Fast Gradient Sign Method (FGSM) attack object and
    # graph
    fgsm = FastGradientMethod(model, sess=sess)
    adv_x = fgsm.generate(x, **fgsm_params)
    preds_adv = model.get_logits(adv_x)
    # Evaluate the accuracy of the MNIST model on adversarial examples
    do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True)
    # Calculate training error
    if testing:
      do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')
  return report


def main(argv=None):
  from cleverhans_tutorials import check_installation
  check_installation(__file__)

  mnist_tutorial(nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size,
                 learning_rate=FLAGS.learning_rate,
                 clean_train=FLAGS.clean_train,
                 backprop_through_attack=FLAGS.backprop_through_attack,
                 nb_filters=FLAGS.nb_filters)


if __name__ == '__main__':
  flags.DEFINE_integer('nb_filters', NB_FILTERS,
                       'Model size multiplier')
  flags.DEFINE_integer('nb_epochs', NB_EPOCHS,
                       'Number of epochs to train model')
  flags.DEFINE_integer('batch_size', BATCH_SIZE,
                       'Size of training batches')
  flags.DEFINE_float('learning_rate', LEARNING_RATE,
                     'Learning rate for training')
  flags.DEFINE_bool('clean_train', CLEAN_TRAIN, 'Train on clean examples')
  flags.DEFINE_bool('backprop_through_attack', BACKPROP_THROUGH_ATTACK,
                    ('If True, backprop through adversarial example '
                     'construction process during adversarial training'))

  tf.app.run()

跑这个代码就完事啦。

以下是一些对抗结果:

ϵ \epsilon ϵ 攻击成功率
0.4 97.5%
0.3 91.2%
0.2 66%
0.1 23%
0.08 8%
0.06 5.1%

一些对抗样本的logit:
realy: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]
predict: [0.21056737, -0.13243113, 0.51316774, 0.51515293, -0.22385997, -0.36223292, -0.28980073, -0.61583054, 0.5446904, -0.14677687]

realy: [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
predict: [0.0622759, -0.15177919, 0.28638932, 0.48950654, -0.22479388, 0.34589207, -0.0262568, -0.24448192, 0.38647628, 0.0044806357]

realy: [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
predict: [-0.048175618, -0.29588905, 0.6424468, 0.2426339, -0.08349679, -0.25063646, -0.2635439, -0.39338973, 0.80821, 0.10917343]

其实看这些输出,并没有出现对抗里面错误标签的置信度特别高的现象,因此论文里面提到的置信度这么高可能只是个恰合。

你可能感兴趣的:(对抗机器学习)