- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- DeepSeek在智慧物流管控中的全场景落地方案
猴的哥儿
笔记大数据交通物流python数据仓库微服务
一、智慧物流核心痛点与DeepSeek解决方案矩阵物流环节行业痛点DeepSeek技术方案价值增益仓储管理库存预测误差率>30%多模态时空预测模型库存周转率↑40%运输调度车辆空驶率35%强化学习动态调度引擎运输成本↓25%路径规划突发路况响应延迟>30分钟实时路况语义理解+自适应规划准时交付率↑18%异常检测50%异常依赖人工发现多传感器融合的异常模式识别异常发现时效↑6倍客户服务50%咨询需人
- 探索DeepSeek:前端开发者不可错过的新一代AI技术实践指南
formerlyai
人工智能前端
引言:为什么DeepSeek成为技术圈焦点?最近,国产AI模型DeepSeek凭借其低成本训练、高性能输出和开源策略,迅速成为开发者社区的热门话题。作为覆盖语言、代码、视觉的多模态技术矩阵,DeepSeek不仅实现了与ChatGPT相媲美的能力,还通过强化学习驱动的架构创新,解决了大模型落地中的成本与效率瓶颈。对于前端开发者而言,DeepSeek的API接入能力和私有化部署方案,为智能应用开发提供
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 从过拟合到强化学习:机器学习核心知识全解析
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能过拟合强化学习pythonLLMscikit-learn
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 基于DeepSeek R1构建下一代Manus通用型AI智能体的技术实践
zhangjiaofa
DeepSeekR1&AI人工智能大模型DeepSeekManus智能体AI
目录一、技术背景与目标定位1.1大模型推理能力演进趋势1.2DeepSeekR1核心特性解析-混合专家架构(MoE)优化-组相对策略优化(GRPO)原理-多阶段强化学习训练范式1.3Manus智能体框架设计理念-多智能体协作机制-安全执行沙箱设计二、系统架构设计2.1整体架构拓扑图-分层模块交互机制-数据流与控制流设计2.2核心组件实现-规划模块(GRPO算法集成)-记忆系统分级存储架构-工具调用
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 院士领衔、IEEE Fellow 坐镇,清华、上交大、复旦、同济等专家齐聚 2025 全球机器学习技术大会
CSDN资讯
机器学习人工智能
随着Manus出圈,OpenManus、OWL迅速开源,OpenAI推出智能体开发工具,全球AI生态正经历新一轮智能体革命。大模型如何协同学习?大模型如何自我进化?新型强化学习技术如何赋能智能体?围绕这些关键问题,由CSDN&Boolan联合举办的「2025全球机器学习技术大会」将于4月18-19日在上海隆重举行。大会云集院士、10所高校科研工作者、近30家一线科技企业技术实战专家组成的超50位重
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 一文读懂强化学习:从基础到应用
LHTZ
算法时序数据库大数据数据库架构动态规划
强化学习是什么强化学习是人工智能领域的一种学习方法,简单来说,就是让一个智能体(比如机器人、电脑程序)在一个环境里不断尝试各种行为。每次行为后,环境会给智能体一个奖励或者惩罚信号,智能体根据这个信号来调整自己的行为,目的是让自己在未来能获得更多奖励。就像训练小狗,小狗做对了动作(比如坐下),就给它零食(奖励),做错了就没有零食(惩罚),慢慢地小狗就知道怎么做能得到更多零食,也就是学会了最优行为。强
- QwQ-32B企业级本地部署:结合XInference与Open-WebUI使用
大势下的牛马
搭建本地gptRAG知识库人工智能QwQ-32B
QwQ-32B是阿里巴巴Qwen团队推出的一款推理模型,拥有320亿参数,基于Transformer架构,采用大规模强化学习方法训练而成。它在数学推理、编程等复杂问题解决任务上表现出色,性能可媲美拥有6710亿参数的DeepSeek-R1。QwQ-32B在多个基准测试中表现出色,例如在AIME24基准上,其数学问题解决能力得分达到79.5,超过OpenAI的o1-mini。它在LiveBench、
- LLM Weekly(2025.03.03-03.09)
UnknownBody
LLMDailyLLMWeekly语言模型人工智能
网络新闻QwQ-32B:拥抱强化学习的力量。研究人员推出了QwQ-32B,这是一个拥有320亿参数的模型,它利用强化学习来提升推理能力。尽管参数较少,但通过整合类似智能体的推理和反馈机制,QwQ-32B的表现可与更大规模的模型相媲美。该模型可在HuggingFace平台上获取。**人工智能领域的先驱安德鲁·巴托(AndrewBarto)和理查德·萨顿(RichardSutton)因对强化学习的开创
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- 用物理信息神经网络(PINN)解决实际优化问题:全面解析与实践
青橘MATLAB学习
深度学习网络设计人工智能深度学习物理信息神经网络强化学习
摘要本文系统介绍了物理信息神经网络(PINN)在解决实际优化问题中的创新应用。通过将物理定律与神经网络深度融合,PINN在摆的倒立控制、最短时间路径规划及航天器借力飞行轨道设计等复杂任务中展现出显著优势。实验表明,PINN相比传统数值方法及强化学习(RL)/遗传算法(GA),在收敛速度、解的稳定性及物理保真度上均实现突破性提升。关键词:物理信息神经网络;优化任务;深度学习;强化学习;航天器轨道一、
- django allauth 自定义登录界面
waterHBO
djangopythondjango数据库sqlitepython笔记经验分享
起因,目的:为什么前几天还在写强化学习,今天又写django,问就是:客户需求>个人兴趣。问题来源:allauth默认的登录界面不好看,这里记录几个问题。1.注册页面SignUp这里增加,手机号,邮编等等。2.使用谷歌来登录这个步骤其实也简单。xxxxxxxx一定要修改关键的信息,不能随便暴露给别人。xxxxxxxx#HowtouseGoogleLogin.1.createsuperuser.(m
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- 怎么定义世界模型,Sora/Genie/JEPA 谁是世界模型呢?(1)
周博洋K
分布式人工智能深度学习自然语言处理机器学习
说这个问题之前先看一下什么是世界模型,它的定义是什么?首先世界模型的起源是咋回事呢?其实世界模型在ML领域不是什么新概念,远远早于Transfomer这些东西被提出来,因为它最早是强化学习RL领域的,在20世纪90年代由JuergenSchmiduber实验室给提出来的。2018年被Ha和Schmiduber发表了用RNN来做世界模型的论文,相当于给他重新做了一次定义。然后就是最近跟着Sora,G
- 《Natural Actor-Critic》译读笔记
songyuc
笔记
《NaturalActor-Critic》摘要本文提出了一种新型的强化学习架构,即自然演员-评论家(NaturalActor-Critic)。Theactor的更新通过使用Amari的自然梯度方法进行策略梯度的随机估计来实现,而评论家则通过线性回归同时获得自然策略梯度和价值函数的附加参数。本文展示了使用自然策略梯度的actor改进特别有吸引力,因为这些梯度与所选策略表示的坐标框架无关,并且比常规策
- LLM Weekly(2025.02.17-02.23)
UnknownBody
LLMDailyLLMWeekly人工智能自然语言处理
本文是LLM系列文章,主要是针对2025.02.17-02.23这一周的LLM相关新闻与文章、GitHub资源分享。网络新闻Grok3Beta——推理代理的时代。Grok发布了Grok3Beta,通过强化学习、扩展计算和多模态理解提供卓越的推理能力。Grok3和Grok3mini在学术基准上取得了高分,其中Grok3在AIME’25上获得了93.3%的分数。Grok3的推理可通过“思考”按钮访问,
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- 使用DeepSeek来构建LangGraph Agent
乔巴先生24
人工智能python人机交互
随着DeepseekR1的发布,我们不得不把目光聚焦在这个能赶超多个顶流大模型的模型身上,它主要是其在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAIo1正式版。为了更好的了解它的性能,我们这篇文章来尝试用它来构建Agent。安装!pipinstall-qopenailangchainlanggraph
- 当深度学习遇见禅宗:用东方智慧重新诠释DQN算法
带上一无所知的我
智能体的自我修炼:强化学习指南深度学习算法人工智能DQN
当深度学习遇见禅宗:用东方智慧重新诠释DQN算法“好的代码如同山水画,既要工笔细描,又要留白写意”——一个在终端前顿悟的开发者DQN是Q-Learning算法与深度神经网络的结合体,通过神经网络近似Q值函数,解决传统Q-Learning在高维状态空间下的"维度灾难"问题。引言:代码与禅的碰撞♂️在某个调试代码到凌晨三点的夜晚,我突然意识到:强化学习的过程,竟与佛家修行惊人地相似。智能体在环境中探索
- 就在刚刚!马斯克决定将“地球上最聪明的人工智能”Grok-3免费了!
源代码杀手
AI技术快讯人工智能python
Grok-3概述与关键功能Grok-3是由xAI开发的先进AI模型,于2025年2月19日发布,旨在提升推理能力、计算能力和适应性,特别适用于数学、科学和编程问题。作为xAI系列模型的最新版本,Grok-3延续了公司对构建强大且安全的AI系统的承诺,并推动人工智能在多个领域的应用。Grok-3的核心优势在于其大规模强化学习(RL)优化,能够在几秒到几分钟内进行深度推理,适应复杂任务的需求。配备的D
- 机器学习入门知识
十五境剑修
机器学习人工智能
目录前言一、机器学习是什么?二、机器学习的基本类型1.监督学习2.无监督学习3.半监督学习4.强化学习三、机器学习的工作流程四、常见的机器学习算法五、机器学习的评价指标六、机器学习中的过拟合与欠拟合七、机器学习的应用八、学习机器学习的资源前言随着人工智能的发展,作为人工智能中的一个基础且重要的分支——机器学习也是愈发吸引大家来了解以及学习,那么在学习机器学习前,我们需要先来了解一下什么是机器学习,
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息