=====================================================
最简单的视音频播放示例系列文章列表:
最简单的视音频播放示例1:总述
最简单的视音频播放示例2:GDI播放YUV, RGB
最简单的视音频播放示例3:Direct3D播放YUV,RGB(通过Surface)
最简单的视音频播放示例4:Direct3D播放RGB(通过Texture)
最简单的视音频播放示例5:OpenGL播放RGB/YUV
最简单的视音频播放示例6:OpenGL播放YUV420P(通过Texture,使用Shader)
最简单的视音频播放示例7:SDL2播放RGB/YUV
最简单的视音频播放示例8:DirectSound播放PCM
最简单的视音频播放示例9:SDL2播放PCM
=====================================================
上一篇文章记录了GDI播放视频的技术。打算接下来写两篇文章记录Direct3D(简称D3D)播放视频的技术。Direct3D应该Windows下最常用的播放视频的技术。实际上视频播放只是Direct3D的“副业”,它主要用于3D游戏制作。当前主流的游戏几乎都是使用Direct3D制作的,例如《地下城与勇士》,《穿越火线》,《英雄联盟》,《魔兽世界》,《QQ飞车》等等。使用Direct3D可以用两种方式渲染视频:Surface和Texture。使用Surface相对来说比使用Texture要简单一些,但是不如使用Texture灵活。鉴于使用Surface更加容易上手,本文记录使用Direct3D中的Surface显示视频的技术。下一篇文章再记录使用Direct3D中的Texture显示视频的技术。
下面下简单记录一下背景知识。摘录修改了维基上的一部分内容(维基上这部分叙述貌似很不准确…):
Direct3D(简称:D3D)是微软公司在Microsoft Windows系统上开发的一套3D绘图API,是DirectX的一部份,目前广为各家显示卡所支援。1995年2月,微软收购了英国的Rendermorphics公司,将RealityLab 2.0技术发展成Direct3D标准,并整合到Microsoft Windows中,Direct3D在DirectX 3.0开始出现。后来在DirectX 8.0发表时与DirectDraw编程介面合并并改名为DirectX Graphics。Direct3D与Windows GDI是同层级组件。它可以直接调用底层显卡的功能。与OpenGL同为电脑绘图软件和电脑游戏最常使用的两套绘图API。HAL(Hardware Abstraction Layer):支持硬件加速的设备。在所有设备中运行速度是最快的,也是最常用的。每一个Device至少要有一个Swap Chain(交换链)。一个Swap Chain由一个或多个Back Buffer Surfaces(后台缓冲表面)组成。渲染在Back Buffer中完成。
Reference:模拟一些硬件还不支持的新功能。换言之,就是利用软件,在CPU对硬件渲染设备的一个模拟。
Type:描述Resource的类型。例如surface, volume, texture, cube texture, volume texture, surface texture, index buffer 或者vertex buffer。
Usage:描述Resource如何被使用。例如指定Resource是以只读方式调用还是以可读写的方式调用。
Format:数据的格式。比如一个二维表面的像素格式。例如,D3DFMT_R8G8B8的Format表明了数据格式是24 bits颜色深度的RGB数据。
Pool:描述Resource如何被管理和存储。默认的情况下Resource会被存储在设备的内存(例如显卡的显存)中。也可以指定Resource存储在系统内存中。
Direct3D API定义了一组Vertices(顶点), Textures(纹理), Buffers(缓冲区)转换到屏幕上的流程。这样的流程称为Rendering Pipeline(渲染流水线),它的各阶段包括:
Input Assembler(输入组装):从应用程序里读取vertex数据,将其装进流水线。PS:上述处理完后的数据可以理解为以下图片。即包含顶点信息,但不包含颜色信息。
Stream Output(流输出):将Vertex Shader和Geometry Shader处理完成的数据输出给使用者。PS:光栅化的过程可以理解为下图。即把顶点转换成像素。
Pixel Shader(像素着色器):对每个像素进行着色。注意这个地方可能需要自己编程。在记录Direct3D的视频显示技术之前,首先记录一下视频显示的基础知识。我自己归纳总结了以下几点知识。
在Direct3D中经常会出现“三角形”这个概念。这是因为在3D图形渲染中,所有的物体都是由三角形构成的。因为一个三角形可以表示一个平面,而3D物体就是由一个或多个平面构成的。比如下图表示了一个非常复杂的3D地形,它们也不过是由许许多多三角形表示的。
因此我们只要指定一个或多个三角形,就可以表示任意3D物体。后台缓冲表面和前台表面的概念总是同时出现的。简单解释一下它们的作用。当我们进行复杂的绘图操作时,画面可能有明显的闪烁。这是由于绘制的东西没有同时出现在屏幕上而导致的。“前台表面”+“后台缓冲表面”的技术可以解决这个问题。前台表面即我们看到的屏幕,后台缓冲表面则在内存当中,对我们来说是不可见的。每次的所有绘图操作不是在屏幕上直接绘制,而是在后台缓冲表面中进行,当绘制完成后,需要的时候再把绘制的最终结果显示到屏幕上。这样就解决了上述的问题。
实际上,上述技术还涉及到一个“交换链”(Swap Chain)的概念。所谓的“链”,指的是一系列的表面组成的一个合集。这些表面中有一个是前台表面(显示在屏幕上),剩下的都是后台缓冲表面。其实,简单的交换链不需要很多表面,只要两个就可以了(虽然感觉不像“链”)。一个后台缓冲表面,一个前台表面。所谓的“交换”,即是在需要呈现后台缓冲表面中的内容的时候,交换这两个表面的“地位”。即前台表面变成后台缓冲表面,后台缓冲表面变成前台表面。如此一来,后台缓冲表面的内容就呈现在屏幕上了。原先的前台表面,则扮演起了新的后台缓冲表面的角色,准备进行新的绘图操作。当下一次需要显示画面的时候,这两个表面再次交换,如此循环往复,永不停止。使用Direct3D开发之前需要安装DirectX SDK。安装没有难度,一路“Next”即可。
Microsoft DirectX SDK (June 2010)下载地址:#include
有关Direct3D的知识的介绍还有很多,在这里就不再记录了。正如那句俗话:“Talk is cheap, show me the code.”,光说理论还是会给人一种没有“脚踏实地”的感觉,下文将会结合代码记录Direct3D中使用Surface渲染视频的技术。
使用Direct3D的Surface播放视频一般情况下需要如下步骤:
1. 创建一个窗口(不属于D3D的API)1) 创建一个Device3. 循环显示画面
2) 基于Device创建一个Surface(离屏表面)
1) 清理
2) 一帧视频数据拷贝至 Surface
3) 开始一个Scene
4) Surface数据拷贝至 后台缓冲表面
5) 结束Scene
6) 显示( 后台缓冲表面-> 前台表面)
下面结合Direct3D播放YUV/RGB的示例代码,详细分析一下上文的流程。
建立一个Win32的窗口程序,就可以用于Direct3D的显示。程序的入口函数是WinMain(),调用CreateWindow()即可创建一个窗口。这一步是必须的,不然Direct3D绘制的内容就没有地方显示了。此处不再详述。
1) 创建一个Device
这一步完成的时候,可以得到一个IDirect3DDevice9接口的指针。创建一个Device又可以分成以下几个详细的步骤:IDirect3D9 *m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );
IDirect3D9接口是一个代表我们显示3D图形的物理设备的C++对象。它可以用于获得物理设备的信息和创建一个IDirect3DDevice9接口。例如,可以通过它的GetAdapterDisplayMode()函数获取当前主显卡输出的分辨率,刷新频率等参数,实现代码如下。
D3DDISPLAYMODE d3dDisplayMode;
lRet = m_pDirect3D9->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &d3dDisplayMode );
/* Display Modes */
typedef struct _D3DDISPLAYMODE
{
UINT Width;
UINT Height;
UINT RefreshRate;
D3DFORMAT Format;
} D3DDISPLAYMODE;
D3DCAPS9 d3dcaps;
lRet=m_pDirect3D9->GetDeviceCaps(D3DADAPTER_DEFAULT,D3DDEVTYPE_HAL,&d3dcaps);
int hal_vp = 0;
if( d3dcaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ){
// yes, save in ‘vp’ the fact that hardware vertex
// processing is supported.
hal_vp = D3DCREATE_HARDWARE_VERTEXPROCESSING;
}
typedef struct _D3DPRESENT_PARAMETERS_
{
UINT BackBufferWidth;
UINT BackBufferHeight;
D3DFORMAT BackBufferFormat;
UINT BackBufferCount;
D3DMULTISAMPLE_TYPE MultiSampleType;
DWORD MultiSampleQuality;
D3DSWAPEFFECT SwapEffect;
HWND hDeviceWindow;
BOOL Windowed;
BOOL EnableAutoDepthStencil;
D3DFORMAT AutoDepthStencilFormat;
DWORD Flags;
/* FullScreen_RefreshRateInHz must be zero for Windowed mode */
UINT FullScreen_RefreshRateInHz;
UINT PresentationInterval;
} D3DPRESENT_PARAMETERS;
//D3DPRESENT_PARAMETERS Describes the presentation parameters.
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( &d3dpp, sizeof(d3dpp) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
(c) 通过IDirect3D9的CreateDevice ()创建一个Device。
最后就可以调用IDirect3D9的CreateDevice()方法创建Device了。
CreateDevice()的函数原型如下:
HRESULT CreateDevice(
UINT Adapter,
D3DDEVTYPE DeviceType,
HWND hFocusWindow,
DWORD BehaviorFlags,
D3DPRESENT_PARAMETERS *pPresentationParameters,
IDirect3DDevice9** ppReturnedDeviceInterface
);
Adapter:指定对象要表示的物理显示设备。D3DADAPTER_DEFAULT始终是主要的显示器适配器。
DeviceType:设备类型,包括D3DDEVTYPE_HAL(Hardware Accelerator,硬件加速)、D3DDEVTYPE_SW(SoftWare,软件)。下面列出使用Direct3D播放视频的时候CreateDevice()的一个典型的代码。
IDirect3DDevice9 *m_pDirect3DDevice;
D3DPRESENT_PARAMETERS d3dpp;
…
m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &m_pDirect3DDevice );
通过IDirect3DDevice9接口的CreateOffscreenPlainSurface ()方法即可创建一个Surface(离屏表面。所谓的“离屏”指的是永远不在屏幕上显示)。CreateOffscreenPlainSurface ()的函数原型如下所示:
HRESULT CreateOffscreenPlainSurface(UINT width,
UINT height,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DSurface9 ** result,
HANDLE * unused
);
下面给出一个使用Direct3D播放视频的时候CreateTexture()的典型代码。该代码创建了一个像素格式为YV12的离屏表面,存储于显卡的显存中。
IDirect3DDevice9 * m_pDirect3DDevice;
IDirect3DSurface9 *m_pDirect3DSurfaceRender;
…
m_pDirect3DDevice->CreateOffscreenPlainSurface(
lWidth,lHeight,
(D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'),
D3DPOOL_DEFAULT,
&m_pDirect3DSurfaceRender,
NULL);
循环显示画面就是一帧一帧的读取YUV/RGB数据,然后显示在屏幕上的过程,下面详述一下步骤。
1) 清理在显示之前,通过IDirect3DDevice9接口的Clear()函数可以清理Surface。个人感觉在播放视频的时候用不用这个函数都可以。因为视频本身就是全屏显示的。显示下一帧的时候自然会覆盖前一帧的所有内容。Clear()函数的原型如下所示:
HRESULT Clear(
DWORD Count,
const D3DRECT *pRects,
DWORD Flags,
D3DCOLOR Color,
float Z,
DWORD Stencil
);
下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Clear()的典型代码。
IDirect3DDevice9 *m_pDirect3DDevice;
m_pDirect3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);
操作Surface的像素数据,需要使用IDirect3DSurface9的LockRect()和UnlockRect()方法。使用LockRect()锁定纹理上的一块矩形区域,该矩形区域被映射成像素数组。利用函数返回的D3DLOCKED_RECT结构体,可以对数组中的像素进行直接存取。LockRect()函数原型如下。
HRESULT LockRect(
D3DLOCKED_RECT *pLockedRect,
const RECT *pRect,
DWORD Flags
);
其中D3DLOCKED_RECT结构体定义如下所示。
typedef struct _D3DLOCKED_RECT
{
INT Pitch;
void* pBits;
} D3DLOCKED_RECT;
IDirect3DSurface9 *m_pDirect3DSurfaceRender;
HRESULT lRet;
...
D3DLOCKED_RECT d3d_rect;
lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT);
if(FAILED(lRet))
return -1;
byte *pSrc = buffer;
byte * pDest = (BYTE *)d3d_rect.pBits;
int stride = d3d_rect.Pitch;
unsigned long i = 0;
//Copy Data (YUV420P)
for(i = 0;i < pixel_h;i ++){
memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w);
}
for(i = 0;i < pixel_h/2;i ++){
memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2);
}
for(i = 0;i < pixel_h/2;i ++){
memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2);
}
lRet=m_pDirect3DSurfaceRender->UnlockRect();
GetBackBuffer()函数原型如下。
HRESULT GetBackBuffer(
UINT iSwapChain,
UINT BackBuffer,
D3DBACKBUFFER_TYPE Type,
IDirect3DSurface9 ** ppBackBuffer
);
ppBackBuffer:保存后台缓冲表面的LPDIRECT3DSURFACE9对象。
StretchRect()可以将一个矩形区域的像素从设备内存的一个Surface转移到另一个Surface上。StretchRect()函数的原型如下。
HRESULT StretchRect(
IDirect3DSurface9 * pSourceSurface,
CONST RECT * pSourceRect,
IDirect3DSurface9 * pDestSurface,
CONST RECT * pDestRect,
D3DTEXTUREFILTERTYPE Filter
);
下面给出的代码将离屏表面的数据传给了后台缓冲表面。一但传给了后台缓冲表面,就可以用于显示了。
IDirect3DDevice9 *m_pDirect3DDevice;
IDirect3DSurface9 *m_pDirect3DSurfaceRender;
IDirect3DSurface9 * pBackBuffer;
m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer);
m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);
使用IDirect3DDevice9接口的Present ()显示结果。Present ()的原型如下。
HRESULT Present(
const RECT *pSourceRect,
const RECT *pDestRect,
HWND hDestWindowOverride,
const RGNDATA *pDirtyRegion
);
下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Present ()的典型代码。从代码可以看出,全部设置为NULL就可以了。
IDirect3DDevice9 *m_pDirect3DDevice;
…
m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );
文章至此,使用Direct3D显示YUV/RGB的全部流程就记录完毕了。最后贴一张图总结上述流程。
完整的代码如下所示。
/**
* 最简单的Direct3D播放视频的例子(Direct3D播放RGB/YUV)[Surface]
* Simplest Video Play Direct3D (Direct3D play RGB/YUV)[Surface]
*
* 雷霄骅 Lei Xiaohua
* [email protected]
* 中国传媒大学/数字电视技术
* Communication University of China / Digital TV Technology
* http://blog.csdn.net/leixiaohua1020
*
* 本程序使用Direct3D播放RGB/YUV视频像素数据。使用D3D中的Surface渲染数据。
* 使用Surface渲染视频相对于另一种方法(使用Texture)来说,更加简单,适合
* 新手学习。
* 函数调用步骤如下:
*
* [初始化]
* Direct3DCreate9():获得IDirect3D9
* IDirect3D9->CreateDevice():通过IDirect3D9创建Device(设备)。
* IDirect3DDevice9->CreateOffscreenPlainSurface():通过Device创建一个Surface(离屏表面)。
*
* [循环渲染数据]
* IDirect3DSurface9->LockRect():锁定离屏表面。
* memcpy():填充数据
* IDirect3DSurface9->UnLockRect():解锁离屏表面。
* IDirect3DDevice9->BeginScene():开始绘制。
* IDirect3DDevice9->GetBackBuffer():获得后备缓冲。
* IDirect3DDevice9->StretchRect():拷贝Surface数据至后备缓冲。
* IDirect3DDevice9->EndScene():结束绘制。
* IDirect3DDevice9->Present():显示出来。
*
* This software play RGB/YUV raw video data using Direct3D. It uses Surface
* in D3D to render the pixel data. Compared to another method (use Texture),
* it is more simple and suitable for the beginner of Direct3D.
* The process is shown as follows:
*
* [Init]
* Direct3DCreate9(): Get IDirect3D9.
* IDirect3D9->CreateDevice(): Create a Device.
* IDirect3DDevice9->CreateOffscreenPlainSurface(): Create a Offscreen Surface.
*
* [Loop to Render data]
* IDirect3DSurface9->LockRect(): Lock the Offscreen Surface.
* memcpy(): Fill pixel data...
* IDirect3DSurface9->UnLockRect(): UnLock the Offscreen Surface.
* IDirect3DDevice9->BeginScene(): Begin drawing.
* IDirect3DDevice9->GetBackBuffer(): Get BackBuffer.
* IDirect3DDevice9->StretchRect(): Copy Surface data to BackBuffer.
* IDirect3DDevice9->EndScene(): End drawing.
* IDirect3DDevice9->Present(): Show on the screen.
*/
#include
#include
#include
CRITICAL_SECTION m_critial;
IDirect3D9 *m_pDirect3D9= NULL;
IDirect3DDevice9 *m_pDirect3DDevice= NULL;
IDirect3DSurface9 *m_pDirect3DSurfaceRender= NULL;
RECT m_rtViewport;
//set '1' to choose a type of file to play
//Read BGRA data
#define LOAD_BGRA 0
//Read YUV420P data
#define LOAD_YUV420P 1
//Width, Height
const int screen_w=500,screen_h=500;
const int pixel_w=320,pixel_h=180;
FILE *fp=NULL;
//Bit per Pixel
#if LOAD_BGRA
const int bpp=32;
#elif LOAD_YUV420P
const int bpp=12;
#endif
unsigned char buffer[pixel_w*pixel_h*bpp/8];
void Cleanup()
{
EnterCriticalSection(&m_critial);
if(m_pDirect3DSurfaceRender)
m_pDirect3DSurfaceRender->Release();
if(m_pDirect3DDevice)
m_pDirect3DDevice->Release();
if(m_pDirect3D9)
m_pDirect3D9->Release();
LeaveCriticalSection(&m_critial);
}
int InitD3D( HWND hwnd, unsigned long lWidth, unsigned long lHeight )
{
HRESULT lRet;
InitializeCriticalSection(&m_critial);
Cleanup();
m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );
if( m_pDirect3D9 == NULL )
return -1;
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( &d3dpp, sizeof(d3dpp) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
GetClientRect(hwnd,&m_rtViewport);
lRet=m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &m_pDirect3DDevice );
if(FAILED(lRet))
return -1;
#if LOAD_BGRA
lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface(
lWidth,lHeight,
D3DFMT_X8R8G8B8,
D3DPOOL_DEFAULT,
&m_pDirect3DSurfaceRender,
NULL);
#elif LOAD_YUV420P
lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface(
lWidth,lHeight,
(D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'),
D3DPOOL_DEFAULT,
&m_pDirect3DSurfaceRender,
NULL);
#endif
if(FAILED(lRet))
return -1;
return 0;
}
bool Render()
{
HRESULT lRet;
//Read Data
//RGB
if (fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp) != pixel_w*pixel_h*bpp/8){
// Loop
fseek(fp, 0, SEEK_SET);
fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp);
}
if(m_pDirect3DSurfaceRender == NULL)
return -1;
D3DLOCKED_RECT d3d_rect;
lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT);
if(FAILED(lRet))
return -1;
byte *pSrc = buffer;
byte * pDest = (BYTE *)d3d_rect.pBits;
int stride = d3d_rect.Pitch;
unsigned long i = 0;
//Copy Data
#if LOAD_BGRA
int pixel_w_size=pixel_w*4;
for(i=0; i< pixel_h; i++){
memcpy( pDest, pSrc, pixel_w_size );
pDest += stride;
pSrc += pixel_w_size;
}
#elif LOAD_YUV420P
for(i = 0;i < pixel_h;i ++){
memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w);
}
for(i = 0;i < pixel_h/2;i ++){
memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2);
}
for(i = 0;i < pixel_h/2;i ++){
memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2);
}
#endif
lRet=m_pDirect3DSurfaceRender->UnlockRect();
if(FAILED(lRet))
return -1;
if (m_pDirect3DDevice == NULL)
return -1;
m_pDirect3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0 );
m_pDirect3DDevice->BeginScene();
IDirect3DSurface9 * pBackBuffer = NULL;
m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer);
m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);
m_pDirect3DDevice->EndScene();
m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );
pBackBuffer->Release();
return true;
}
LRESULT WINAPI MyWndProc(HWND hwnd, UINT msg, WPARAM wparma, LPARAM lparam)
{
switch(msg){
case WM_DESTROY:
Cleanup();
PostQuitMessage(0);
return 0;
}
return DefWindowProc(hwnd, msg, wparma, lparam);
}
int WINAPI WinMain( __in HINSTANCE hInstance, __in_opt HINSTANCE hPrevInstance, __in LPSTR lpCmdLine, __in int nShowCmd )
{
WNDCLASSEX wc;
ZeroMemory(&wc, sizeof(wc));
wc.cbSize = sizeof(wc);
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
wc.lpfnWndProc = (WNDPROC)MyWndProc;
wc.lpszClassName = L"D3D";
wc.style = CS_HREDRAW | CS_VREDRAW;
RegisterClassEx(&wc);
HWND hwnd = NULL;
hwnd = CreateWindow(L"D3D", L"Simplest Video Play Direct3D (Surface)", WS_OVERLAPPEDWINDOW, 100, 100, 500, 500, NULL, NULL, hInstance, NULL);
if (hwnd==NULL){
return -1;
}
if(InitD3D( hwnd, pixel_w, pixel_h)==E_FAIL){
return -1;
}
ShowWindow(hwnd, nShowCmd);
UpdateWindow(hwnd);
#if LOAD_BGRA
fp=fopen("../test_bgra_320x180.rgb","rb+");
#elif LOAD_YUV420P
fp=fopen("../test_yuv420p_320x180.yuv","rb+");
#endif
if(fp==NULL){
printf("Cannot open this file.\n");
return -1;
}
MSG msg;
ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT){
//PeekMessage, not GetMessage
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){
TranslateMessage(&msg);
DispatchMessage(&msg);
}
else{
Sleep(40);
Render();
}
}
UnregisterClass(L"D3D", hInstance);
return 0;
}
1.可以通过设置定义在文件开始出的宏,决定读取哪个格式的像素数据(bgra,yuv420p)。
//set '1' to choose a type of file to play
//Read BGRA data
#define LOAD_BGRA 0
//Read YUV420P data
#define LOAD_YUV420P 1
2.窗口的宽高为screen_w,screen_h。像素数据的宽高为pixel_w,pixel_h。它们的定义如下。
//Width, Height
const int screen_w=500,screen_h=500;
const int pixel_w=320,pixel_h=180;
不论选择读取哪个格式的文件,程序的最终输出效果都是一样的,如下图所示。
代码位于“Simplest Media Play”中
注:
该项目会不定时的更新并修复一些小问题,最新的版本请参考该系列文章的总述页面:
《最简单的视音频播放示例1:总述》