- 基于OpenCv的图片倾斜校正系统详细设计与具体代码实现
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于OpenCv的图片倾斜校正系统详细设计与具体代码实现1.背景介绍1.1图像处理的重要性在当今数字时代,图像处理技术在各个领域都扮演着重要角色。无论是在计算机视觉、模式识别、医学影像、遥感探测还是多媒体处理等领域,图像处理都是不可或缺的核心技术。通过对图像进行预处理、增强、分割、特征提取等操作,可以从图像中获取有价值的信息,为后续的分析和决策提供支持。1.2图像倾斜问题及其影响在实际应用中,由于
- 如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割 深度学习遥感图像滑坡泥石流分割数据集的训练及应用
计算机C9硕士_算法工程师
YOLO深度学习人工智能
如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割深度学习遥感图像滑坡泥石流分割数据集的训练及应用文章目录遥感图像滑坡-泥石流分割数据集情况数据集概述类别统计总体统计注意事项✅一、安装CUDA驱动(Linux示例)✅二、安装Anaconda(Linux示例)✅三、创建Python虚拟环境并安装依赖✅四、数据集结构示例(遥感图像滑坡-泥石流分割)✅五、创建data.yaml文件(用于训练)✅六、
- 【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!
努力毕业的小土博^_^
学术会议推荐信号处理机器学习神经网络人工智能
【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!文章目录【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模
- 【简历】某985大学:java简历项目重复度太高面试机会较少
愤怒的小青春
java
美团实习-衣食住行上班分享✅工作地点与居住环境我的工作地点在北京的恒电大厦。为了方便上下班,我选择了在距离恒电大厦约2公里的地西安华为od还有嘛23届本科双非一本计算机现在在一家初创公司实习做遥感算法因为一个人支持整个项目加上待遇不高网易互娱泡池子uu们,网易互娱最后开奖和base地有没有关系呀上周五面的游戏研发服务端hr面,到现在也没开奖。身边等一个转正系统开放~今天看了下入职已经49天了,据说
- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- SWAT模型高阶应用暨SWAT模型无资料地区建模、不确定分析及气候、土地利用变化对水资源与面源污染影响分析
Yolo566Q
经验分享
一:SWAT模型应用热点分析1.1SWAT模型应用文献解析及热点剖析1.2讨论二:无资料地区快速建立SWAT模型2.1无资料地区DEM数据制备2.2无资料地区土地利用制备2.3无资料地区土壤数据制备2.4无资料地区气象数据制备2.5无资料地区SWAT模型率定验证2.6案例分析:遥感产品和SWAT模型结合研究三:ArcGIS高级及应用3.1ArcGIS高级操作3.2ArcGIS水文分析及SWAT应用
- 【硕博生必备】2025年6-7月-智联天地:数字设计×遥感测绘×可持续转型的创新算法全景
努力毕业的小土博^_^
学术会议推荐算法python人工智能深度学习学习
【硕博生必备】2025年6-7月-智联天地:数字设计×遥感测绘×可持续转型的创新算法全景【硕博生必备】2025年6-7月-智联天地:数字设计×遥感测绘×可持续转型的创新算法全景文章目录【硕博生必备】2025年6-7月-智联天地:数字设计×遥感测绘×可持续转型的创新算法全景第二届数字系统与设计创新国际学术会议(ICDSDI2025)第二届遥感与全球定位算法国际会议(RSGPA2025)第三届遥感、测
- SWAT模型高阶应用——无资料地区建模、不确定分析及气候变化、土地利用对面源污染影响模型
青春不败 177-3266-0520
水文水资源SWAT模型水文水资源水文模型面源污染土地利用
一:SWAT模型应用热点分析1.1SWAT模型应用文献解析及热点剖析二:无资料地区快速建立SWAT模型2.1无资料地区DEM数据制备2.2无资料地区土地利用制备2.3无资料地区土壤数据制备2.4无资料地区气象数据制备2.5无资料地区SWAT模型率定验证2.6遥感产品和SWAT模型结合研究三:基于控制单元的流域SWAT模型建立3.1ArcGIS高级操作3.2ArcGIS水文分析及SWAT应用3.3p
- YOLOV8模型优化-选择性视角类别整合模块(SPCI):遥感目标检测的注意力增强模型详解
清风AI
YOLO算法魔改系列深度学习算法详解及代码复现计算机视觉算法目标跟踪人工智能计算机视觉YOLOpython目标检测深度学习
一、研究背景与挑战随着卫星和无人机技术的普及,高分辨率遥感影像为城市规划、灾害监测等领域提供了海量数据。然而,遥感目标检测面临三大难题:尺度剧变:目标尺寸从几米到几百米不等(如飞机vs油罐)密集分布:港口/机场等场景存在大量密集目标背景干扰:自然/人造景观交织导致语义混淆现有方法如YOLOv8虽在通用目标检测表现优异,但在遥感场景存在以下局限:Backbone缺乏显式的多尺度特征融合机制传统注意力
- 毫米波是通向5G最好的桥梁
cjfvejem656099
5g嵌入式
电磁频谱是无线通信的高速公路,有多条车道可以承载不同速度的交通。更高的频率、更短的波长,能够在单位时间内传输更多信息。严格来说,毫米波(mmWave)只能指EHF频段,即频率范围是30GHz——300GHz的电磁波。相较于LTE所采用的6GHz以下频段,毫米波可提供更高的吞吐量,和更高的总容量。从历史上看,毫米波技术昂贵且难以部署,这限制了它在射电天文学、微波遥感和地面固定通信等领域的应用。然而,
- EasyFeature:智能要素提取的遥感技术创新
智绘空天
人工智能深度学习机器学习图像处理
引言传统遥感解译受制于海量数据与地物复杂性,精度与效率常陷入瓶颈。EasyFeature软件正是应对这一领域痛点的先锋解决方案,其核心“要素智能提取”特性,聚焦于云覆盖、道路、居民地/建筑物、林地、水系等关键专题信息的深度挖掘,彻底改变了工程化影像处理流程。该软件依托强大的核心技术壁垒与智能算法,不仅有效提升了信息提取精度,更将遥感解译的效率提升至全新高度,为遥感数据分析领域注入自动化能量。核心技
- 基于遥感解译与GIS技术生态环境影响评价图件制作(土地利用图、植被类型图、植被覆盖度图、土壤侵蚀图等)
《环境影响评价技术导则生态影响》(HJ19—2022)即将实施,其中生态影响评价图件是生态影响评价报告的必要组成内容,是评价的主要依据和成果的重要表现形式,是指导生态保护措施设计的重要依据。在众多图件中,土地利用图、植被类型图、植被覆盖度图、土壤侵蚀图等专题图的制作需用到大量的遥感和GIS技术。目标:1、熟练掌握遥感和GIS土地利用现状解译与制图技术方法2、熟练掌握遥感和GIS植被分类与制图技术方
- 区域网空三加密——大面积、大范围
啦啦球晃晃
图像处理
大面积区域空三加密(空中三角测量加密)的精度控制是摄影测量与遥感领域的核心挑战,需结合技术优化、流程管理和算法创新。总结关键方法:一、控制点优化布设布点密度与分布规则区域:采用“九宫格”或“米字形”布点,边界及中心均匀覆盖。例如,平地每平方公里布设1-2个带PPK/RTK的像控点,非差分无人机需4-5个点。带状区域(如公路、河道):垂直走向按“Z”字形布点,避免“S”形导致的高程误差累积复杂地形(
- 卫星的“太空陀螺”:反作用轮如何精准控制姿态?
ScilogyHunter
航天器姿控卫星姿态控制
卫星的“太空陀螺”:反作用轮如何精准控制姿态?在距地面500公里的轨道上,一颗遥感卫星正以7.8km/s的速度飞越目标区域。此时星载计算机发出指令:“滚转15°并对准目标点”。短短数秒后,数吨重的卫星如同被无形之手推动般完成转向,镜头稳定锁定地面——这一切的核心执行者,正是被称为“卫星方向盘”的反作用轮。一、反作用轮的核心原理:角动量守恒定律想象你坐在可旋转的办公椅上:当你将手臂水平伸直并快速转动
- GPT-ArcGIS 在生态评价中的综合应用:多因子权重分析与适宜性制图
技术点目录专题一AI大模型应用1.1人工智能(AI)、机器学习、深度学习及大模型专题二ArcGIS工作流程及功能专题三prompt的使用技巧专题四AI助力工作流程专题五AI助力数据读取专题六AI助力数据编辑与处理专题七AI助力空间分析专题八AI助力遥感分析专题九AI助力二次开发专题十AI助力科研绘图专题十一ArcGIS+AI综合应用了解更多—————————————————————————————
- PostGIS实现栅格波段提取与重组【ST_Band】
gerrywhu
postgis栅格数据栅格波段提取栅格波段重组ST_Band
全部文章内容请转公众号【PostGIS专栏】,原创不易,求关注支持,更多开源GIS相关知识技能分享,免费提供学习问答交流。一、函数概述二、核心参数与语法结构三、参数详解与使用规范1.波段选择参数2.返回值逻辑3.弃用提示四、典型用法示例示例1:提取多光谱影像指定波段(如NDVI计算)示例2:重组波段顺序(如RGB转BGR)示例3:复制单波段生成多波段栅格五、应用场景1.遥感影像分析2.影像处理与格
- matlab纹理分析,森林遥感图片的纹理分析(MATLAB)☆
沐辉东方
matlab纹理分析
摘要遥感技术不断提高,森林遥感图像所含信息越来越多,仅用光谱信息无法将其区分开,而用纹理特征分析对于在图像的识别起着非常重要的作用,因此遥感影像的纹理分析已经成为一种重要的提高遥感影像分类精度的手段。本文以森林遥感图片为研究对象,学习纹理分析的不同方法,选择合适且简单的方法对森林遥感图像进行纹理分析。首先,针对森林遥感图像的特点并结合现行纹理分析的不同方法,选择适于描述森林纹理的灰度共生矩阵方法,
- YoloV8改进策略:Block改进|FCM,特征互补映射模块|AAAI 2025|即插即用
AI智韵
YOLO
1论文信息FBRT-YOLO(FasterandBetterforReal-TimeAerialImageDetection)是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架,发表于AAAI2025。论文针对航拍场景中小目标检测的核心难题展开研究,重点解决小目标因分辨率低、背景干扰多导致的定位困难,以及现有方法在实时性与精度间的失衡问题。航拍图像目标检测是无人机、遥感监测等应用的关键
- AI+遥感应用深度报告:气候变化监测中的CV技术突破点(人工智能丨智慧农业丨机器学习丨计算机视觉丨深度学习丨神经网络)
唐宇迪(学习规划+技术答疑)
人工智能机器学习深度学习计算机视觉目标检测神经网络视觉检测
一、技术价值量化公式解析技术价值=(监测精度的1.2次方×时空分辨率)÷计算成本×预测提前量的自然对数公式要素定义(5级量化标准):指标定义分级标准(1-5分)监测精度温度/降水等参数测量误差1分:误差>5%;2分:3%-5%;3分:1%-3%;4分:0.5%-1%;5分:30天×100km;2分:15天×50km;3分:7天×25km;4分:1天×10km;5分:小时级×1km计算成本单节点年运
- DenoDet:SAR 图像目标检测
码上奶茶
目标检测人工智能计算机视觉
一、什么是SAR图像SAR图像是一种独特的遥感成像技术,能够穿透云、雨、雪和雾等大气障碍物,因此在多个领域都有广泛应用,如地质勘探、环境监测、军事侦察等二、SAR图像上目标检测的挑战散斑噪声干扰(specklenoise):SAR是一个相干成像系统,其图像本质上包含不可避免的散斑噪声,会叠加在目标上针对散斑噪声的传统解决办法:多尺度特征表示、合并上下文信息、软阈值小目标的挑战(smalltarge
- ArcGIS+AI:涵盖AI大模型应用、ArcGIS功能详解、Prompt技巧、AI助力的数据处理、空间分析、遥感分析、二次开发及综合应用等
小艳加油
教程ArcGISAI遥感分析空间分析数据处理
GIS凭借其强大的空间数据处理能力、先进的空间分析工具、灵活的地图制作与可视化功能,以及广泛的扩展性和定制性,已成为地理信息科学的核心工具。它在城市规划、环境科学、交通管理等多个学科领域发挥着至关重要的作用。与此同时,GPT等AI大模型在自然语言处理、文本生成、智能对话和知识库构建方面的优势,为GIS的智能化和自动化带来了新的可能性,显著提升了文本创作的效率和智能系统的交互体验。ArcGIS作为G
- 【Block总结】MKP,多尺度卷积核级联结构,增强感受野适应性|AAAI 2025
AI浩
目标跟踪人工智能计算机视觉
1论文信息FBRT-YOLO(FasterandBetterforReal-TimeAerialImageDetection)是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架,发表于AAAI2025。论文针对航拍场景中小目标检测的核心难题展开研究,重点解决小目标因分辨率低、背景干扰多导致的定位困难,以及现有方法在实时性与精度间的失衡问题。航拍图像目标检测是无人机、遥感监测等应用的关键
- ENVI二次开发应用:ENVI Task实例
RSer_gis
对遥感影像进行二值化,在进行分类,之后把分类结果矢量化(提取出矢量边界)。PROtest_Build_FootprintCOMPILE_OPTidl2e=envi()file=FILE_DIRNAME(ROUTINE_FILEPATH())+$'\data\beijingRGB.dat';打开某路径下的ENVI标准格式的数据Raster=e.OpenRaster(file)outShpFile=e
- ENVI二次开发应用:批量裁剪栅格数据
RSer_gis
图像处理
功能:实现单个矢量数据(shp文件)对多幅遥感影像的裁剪probatch_subset_raster_taskcompile_optidl2;compole_opt是对idl编译规则的修改,关键字有defint32,strictarr,idl2等;defint32把默认的idl整型数据16位改为32位;strictarr强迫数组元素用中括号,不用小括号;idl2则为上述二者的并。e=envi(/h
- GIS基础应用技术从0开始
前端小白从0开始
html5vue.js前端GISOpenLayers
一、GIS数据构成1、地图数据:包括地形图,交通图,水系图等基础地理信息,如高德路网图,中国地形图等。图1-高德卫星图+路网2、遥感数据:通过卫星,无人机等遥感设备获取的影响数据。如天地图和地块管理系统中展示的高清地图图2-卫星遥感影像与无人机影像3、属性数据:描述地理实体特征的文字和数字信息。例如一个地块的类型和面积。图3-地理元素与其属性表4、元数据:描述地理数据的内容、质量、来源等信息的数据
- arcgis 计算经纬度面积及长度
老刘忙Giser
gis
用一副遥感影像作为底图配准后进行矢量化,想要求出上面每个图斑面积的大小方法1:首先应该把地理坐标(经纬度)转换为投影坐标。然后打开多边形的attributetable,里面有一个功能叫calculategeometry方法2:打开要计算的shape文件的属性表,添加一个叫area的字段,然后选择area这个字段,右击,calculate,打开对话框后,点advanced的复选框,把下面的代码拷入就
- 星敏感器:卫星姿态测量的“星空导航仪”
ScilogyHunter
航天器星敏星敏感器姿轨控
星敏感器:卫星姿态测量的“星空导航仪”1.引言在卫星、航天器和深空探测器的姿态控制系统中,星敏感器(StarTracker)是最精确的姿态测量设备之一。它通过识别恒星的位置,计算出航天器在惯性空间中的三轴姿态,精度可达角秒级(arcsecond),是许多高精度任务(如遥感、天文观测、深空探测)的核心传感器。本文将深入介绍星敏感器的工作原理、功能、应用场景、使用方法,并探讨其未来发展趋势。2.星敏感
- Remote Sensing投稿记录(投稿邮箱写错、申请大修延期...)风雨波折投稿路
水静川流
YOLOremotesensing投稿经历YOLO
历时近一个半月,我中啦!RS是中科院二区,2023-2024影响因子4.2,五年影响因子4.9。投稿前特意查了下预警,发现近五年都不在预警名单中,甚至最新中科院SCI分区(2025年3月)在各小类上比另一个遥感二区大类期刊还多一个二区小类,(一般3到8周,我这篇在六到七个周),完结撒花!敝帚自珍啦。以下是投稿历程记录:4.11投稿前自己查了下查重率和AIGC,满足要求4.11投稿4.12under
- 【卫星工程系列】海哨一号卫星
码上通天地
卫星工程系列科技
北京时间2024年12月4日12时46分,中国在西昌卫星发射中心使用快舟一号甲运载火箭,成功将海哨一号卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。“海哨一号”星是一颗低倾角SAR载荷遥感卫星,主要载荷为X频段合成孔径雷达,最优成像分辨率优于1米,具备单、双、简缩极化成像能力,可实现星上成像和海洋动力信息反演与提取。该星运行于低倾角(43°)轨道,可有效提高中低纬地区观测时空覆盖度;同
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数