- 每天一篇逻辑漏洞
不灭锦鲤
学习
前言:水一篇文章,今天也没有去挖洞内容:学了那么多了,还没有长进,是不是我的学习方法有问题但是到底哪里有问题呢,我又不知道,我好像好久没有总结了,应该写一篇日记,然后总结的一篇文章,然后把日记的内容丢里面,感觉就挺好了,就不用去找文章了好了就这样,进入正题好了,今天学会伪造了jsonp的xss,就是说是json格式的话,不是jsonp格式,可以尝试在url后面加上callback,看是否有返回值
- 2020-10-09
weixin_45660257
笔记
java学习集合的目标1.会使用集合存储数据2.会遍历集合,把数据取出来3.掌握每种集合的特性集合框架的学习方法方式1.学习顶层:学习顶层接口,抽象类中共性的方法,所有的子类创建对象使用Collection接口定义的是所有的单列集合中共性的方法所有的单列集合都可以使用共性的方法没有带索引的方法继承:子类共性抽取形成父类(接口)List接口1.有序的集合(存储和取出元素顺序相同)2.允许存储重复的元
- 强化学习在机器人控制中的应用:从理论到实践
Echo_Wish
前沿技术人工智能机器人
强化学习在机器人控制中的应用:从理论到实践大家好,我是你们熟悉的人工智能与Python领域自媒体创作者Echo_Wish。今天我们来聊聊一个炙手可热的话题——强化学习在机器人控制中的应用。近年来,随着人工智能技术的飞速发展,机器人在各个领域的应用越来越广泛。而强化学习作为一种重要的机器学习方法,为机器人控制提供了强有力的技术支持。接下来,让我们一起探讨强化学习在机器人控制中的原理和实践,并通过具体
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- |网络安全|网络安全学习方法
网络安全King
web安全学习方法安全
1、先网络后安全很多初学者还没搞定网络看懂网络拓扑,就急着研究防火墙或VPN,其实这样就不清楚整个网络架构是如何安全演进的。正确的流程是:先通过网络协议和拓扑设计的学习,能独立搭建一个企业网/校园网,再引入局域网安全、防火墙、入侵检测、VPN等安全技术,使整个网络慢慢变得安全起来,这样才能看到整个网络安全的全貌。2、勤做实验勤抓包目前各大网络和安全厂商都有对应的模拟器,不再需要硬件支持就可以在电脑
- 一、系统分析师考试介绍
Rainbow酱
系统分析系统分析软考
科目1考点考试介绍考试报名、考试科目、大纲及考点分析、证书价值、常见问题。视频课程规划、推荐资料、学习方法。计算机组成与结构数据的表示:进制转换、编码表示、逻辑运算、浮点数。校验码:奇偶校验码、循环冗余校验码、海明校验码。计算机硬件:硬件组成、CPU、寄存器等。计算机指令:寻址方式、指令流水线计算。计算机体系结构:Flynn分类,指令系统CISC和RISC。计算机存储系统:分级存储、cache、存
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 对DeepSeek-R1通过强化学习提升大型语言模型推理能力的技术原理解析
一只贴代码君
语言模型人工智能自然语言处理学习AI编程开发语言
强化学习基础•基本概念:强化学习是一种机器学习方法,智能体(模型)通过与环境进行交互,根据环境反馈的奖励信号来学习最优的行为策略。•关键要素:包括环境(模型所处的推理任务场景)、状态(模型在推理过程中的当前情况,如已有的推理步骤、已知信息等)、动作(模型在当前状态下做出的推理决策,如选择何种推理方法、如何组织语言等)、奖励(根据模型的动作和结果给予的反馈,如推理正确给予正奖励,错误给予负奖励或无奖
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- deepseek:三个月备考高级系统架构师
wujiada001
AI-MODEL系统架构
一、备考总体规划(2025年2月11日-2025年5月)1.第一阶段:基础夯实(2025年2月11日-2025年3月10日)目标:快速掌握系统架构师考试的核心知识点。重点内容:计算机组成原理、操作系统、数据库原理。软件工程、设计模式、系统架构设计原则。网络通信、分布式系统、云计算、大数据等新兴技术。学习方法:阅读《系统架构设计师教程》或精简版教材,快速过一遍知识点。观看视频课程(如慕课网、腾讯课堂
- 聚类算法概念、分类、特点及应用场景【机器学习】【无监督学习】
飞火流星02027
云计算机器学习算法聚类人工智能聚类算法
概念机器学习聚类算法是一种无监督学习方法,旨在将数据集分割成不同的类或簇,使得同一簇内的数据对象相似性尽可能大,而不同簇之间的数据对象差异性也尽可能大。聚类算法广泛应用于新闻自动分组、用户分群、图像分割等领域。主要聚类算法及其特点层次聚类算法层次法(hierarchicalmethods)通过构建数据点之间的层次结构来进行聚类,可以是自底向上的凝聚方法或自顶向下的分裂方法。代表算法包括CU
- 土壤分析:土壤污染监测_(18).土壤污染监测与修复的最新进展
zhubeibei168
农业检测opencv人工智能计算机视觉无人机图像处理农业检测
土壤污染监测与修复的最新进展1.引言随着工业化和城市化的快速发展,土壤污染问题日益严重,对环境和人类健康构成了巨大威胁。传统的土壤污染监测方法依赖于实验室分析,耗时且成本高昂。近年来,计算机视觉技术在土壤污染监测领域的应用取得了显著进展,通过图像处理和机器学习方法,可以快速、准确地识别和监测土壤污染情况。本节将介绍计算机视觉技术在土壤污染监测与修复中的最新进展,包括数据采集、图像处理、特征提取、污
- 大模型学习笔记 - LLM 对齐优化算法 DPO
JL_Jessie
学习笔记算法LLM
LLM-DPOLLM-DPODPO概述DPO目标函数推导DPO目标函数梯度的推导DPO概述大模型预训练是从大量语料中进行无监督学习,语料库内容混杂,训练的目标是语言模型损失,任务是nexttokenprediction,生成的token不可控,为了让大模型能生成符合人类偏好的答案(无毒无害等)一般都会进行微调和人类对齐,通常采用的方法是基于人类反馈的强化学习方法RLHF.RLHF是一个复杂且经常不
- 自监督的主要学习方法
一只波加猹~
自监督学习自监督
自监督学习是一种机器学习方法,其中模型从未标注的数据中学习生成标签,通常通过构造预训练任务或预测任务来从数据的内部结构中提取信息。它的核心目标是利用无监督的数据进行学习,从而在下游任务中更好地利用监督信号。自监督学习的主要方法可以分为以下三类:1.基于上下文(Context-based)方法基于上下文的方法通过预测数据的局部信息或不同部分之间的关系,来进行自监督学习。模型通过挖掘数据本身的结构或模
- Python近红外光谱分析与机器学习、深度学习方法融合实践技术
xiao5kou4chang6kai4
人工智能机器学习深度学习python机器学习深度学习近红外光谱
第一章Python入门基础【理论讲解与案例演示实操练习】1、Python环境搭建(下载、安装与版本选择)。2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)4、常见的错误与程序调试5、第三方模块的安装与使用6、文件读写(I/O)7、实操练习第
- 数据结构、算法与STL
刃神太酷啦
蓝桥杯C++组C++数据结构
数据结构、算法与STL顺序存储比如像手机的通讯录中的排序,就可以在内存中采用顺序存储的方式算法是可以没有输入的,但一定要有输出。没有输出的算法是没有意义的算法的学习方法跟数学相似运行代码的时间用时间复杂度去看时间复杂度只用看被执行次数最多(凭感觉看是哪个)的那个语句使用C++标准注意事项:1.编译器支持几几年的标准,我们就要去写符合标准下的代码2.C++标准可以向前兼容,但是不能向后兼容(eg:支
- 一文掌握什么是时间序列?时间序列研究的核心任务?目前最强大的时序分析与建模工具和项目?
幸运 lucky
人工智能学习之路时间序列核心任务时序分析与建模工具和项目SOTA
CSDN叶庭云:https://yetingyun.blog.csdn.net/什么是时间序列?时间序列是一系列按照时间顺序排列的数据点,这些数据点通常是随时间连续变化的测量值。时间序列分析是统计学中专门用于解析时间顺序数据的一套技术,旨在识别数据中的模式、趋势、季节性波动及其他潜在的周期性特征。然而,当前,机器学习与深度学习方法在这一领域的应用正日益受到青睐。时间序列数据可以来源于各种领域,如经
- Python视频制作引擎Manim安装教程2024版(科学概念可视化)_下载mainm引擎
m0_61067876
程序员python开发语言
一、Python所有方向的学习路线Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、学习软件工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。三、入门学习视频我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们
- c语言八数码问题启发式搜索_一种快速且简单的AI启发式语言学习方法
weixin_26632369
pythonjava人工智能编程语言机器学习
c语言八数码问题启发式搜索介绍(Introduction)ThespecialthingIfoundwhenIfirststarteddivingintothefieldofArtificialIntelligencewastheinfiniteamountofparallelsbetweenhowneuralnetworkslearnandmysubjectiveexperienceofmyow
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 随机森林(Random Forest)预测模型及其特征分析(Python和MATLAB实现)
追蜻蜓追累了
深度学习机器学习python随机森林大数据回归算法算法
##一、背景在大数据和机器学习的快速发展时代,数据的处理和分析变得尤为重要。随着多个领域积累了海量数据,传统的统计分析方法常常无法满足复杂问题的需求。在这种背景下,机器学习方法开始广泛应用。随机森林(RandomForest)作为一种强大的集成学习方法,因其高效性和较强的泛化能力而备受关注。随机森林最初由LeoBreiman在2001年提出,基于决策树这一基本分类模型。其基本思想是通过构建多个决策
- 深度学习盛行,还记得哪些传统机器学习方法和模型?
硬件学长森哥
人工智能深度学习机器学习人工智能
开头森哥说:假期前后在准备成像技术的总结,目前已完成两部分,争取在摸索出一些编辑和运营技巧后,完善成一个系列和大家见面;当然也有可能会通过一些更加贴合摄影实用的角度出一些更加浅显的内容。最终如何呈现还需要慢慢摸索。传统机器学习是指在深度学习盛行之前开发的机器学习和人工智能技术。这些传统方法通常依赖于手工设计的特征提取和模型结构。而深度学习是一种机器学习技术,它通过深层神经网络从原始数据中学习特征表
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 深入解析:Python中的决策树与随机森林
小鹿( ﹡ˆoˆ﹡ )
Pythonpython决策树随机森林Python
在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战,逐步揭开它们的神秘面纱。引言决策树是一种非常直观的预测模型,它通过一系列规则对数据进行分割,最终形成树状结构。而随机森林则是基于决策树的一种集成学习方法,通过构建多个决策树并取其
- Day31-【AI思考】-深度学习方法论全解析——科学提升学习效率的终极指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录深度学习方法论全解析——科学提升学习效率的终极指南**一、影子跟读法(Shadowing)——听力突破核武器****二、番茄工作法(Pomodoro)——时间管理手术刀****三、费曼技巧(FeynmanTechnique)——知识内化加速器****四、康奈尔笔记(CornellNotes)——信息处理引擎**效能倍增组合技常见问题解决方案深度学习方法论全解析——科学提升学习效率的终极指南
- 跨平台物联网漏洞挖掘算法评估框架设计与实现申报书上
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网项目申报跨架构静态分析固件
本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性一、项目技术路线(1)构建统一规范全面的多架构物联网设备二进制程序数据集(2)针对跨架构下的二进制程序,利用逆向工具提取为图、抽象语法树等中间语言,对于不同中间语言,选择合适的深度学习方法提取出中间语言数据结构的特征,
- 聊聊AI中的“蒸馏”技术
自由鬼
行业发展IT应用探讨产品分析对比人工智能深度学习机器学习
一、什么是“蒸馏”技术“蒸馏”技术实际上是指知识蒸馏(KnowledgeDistillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。1.知识蒸馏的过程教师模型(TeacherModel)训练先训练一个大规模基础模型,这个模型能力很强,但计算开销大。生
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement