- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 【大模型实战篇】大模型周边NLP技术回顾及预训练模型数据预处理过程解析(预告)
源泉的小广场
大模型自然语言处理人工智能大模型LLM预训练模型数据预处理高质量数据
1.背景介绍进入到大模型时代,似乎宣告了与过去自然语言处理技术的结束,但其实这两者并不矛盾。大模型时代,原有的自然语言处理技术,依然可以在大模型的诸多场景中应用,特别是对数据的预处理阶段。本篇主要关注TextCNN、FastText和Word2Vec等低成本的自然语言处理技术,如何在大模型时代发挥其余热。今天先抛出这个主题预告,接下来会花些时间,逐步细化分析这些周边技术的算法原理、数学分析以及大模
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- 每天一个数据分析题(五百二十)- 词嵌入模型
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
关于词嵌入模型,以下说法错误的是?A.GloVe模型属于词嵌入模型B.Word2Vec模型属于词嵌入模型C.词袋模型属于词嵌入模型D.词嵌入模型基本假设是出现在相似的上下文中的词含义相似数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于CDA模拟题库点击此处获取答案
- CnOpenData公共数据专区上新 | 中文金融情感词典
CnOpenData
数据列表深度学习python自然语言处理
中文金融情感词典一、数据简介 姜富伟教授及其研究团队于2021年第4期《经济学(季刊)》发表了《媒体文本情绪与股票回报预测》,并在文中介绍了一项极富创造力的金融学科研究成果——中文金融情感词典。 “本文在LoughranandMacDonald(2011)词典的基础上通过人工筛选和word2vec算法扩充,构建了一个更新更全面的中文金融情感词典。我们使用该情感词典计算我国财经媒体文本情绪指标,
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- 基于seq2seq的SKchat语言模型
eric-sjq
语言模型人工智能自然语言处理
SKchat语言模型是由小思框架开放的中文语言模型,基于seq2seq以及word2vec。v3模型的对话功能界面~在代码方面,我们优化了seq2seq算法,降低了内存的占用,并构建了新的模型。whileTrue:model.fit([x_encoder,x_decoder],y,batchsize,1,verbose=1,)"""解码模型"""decoder_h_input=Input(shap
- 【自然语言处理】:实验1布置,Word2Vec&TranE的实现
X.AI666
自然语言处理人工智能机器学习自然语言处理
清华大学驭风计划因为篇幅原因实验答案分开上传,答案链接http://t.csdnimg.cn/5cyMG如果需要详细的实验报告或者代码可以私聊博主有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~实验1:Word2Vec&TranE的实现案例简介Word2Vec是词嵌入的经典模型,它通过词之间的上下文信息来建模词的相似度。TransE是知识表示学习领域的经典模型,它借鉴了Word2Ve
- Task5 基于深度学习的文本分类2
listentorain_W
Task5基于深度学习的文本分类2在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。基于深度学习的文本分类本章将继续学习基于深度学习的文本分类。学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类文本表示方法Part3词向量本节通过word2vec学习
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- 使用Word Embedding+Keras进行自然语言处理NLP
取名真难.
机器学习keraspython深度学习神经网络人工智能自然语言处理
目录介绍:one-hot:pad_sequences:建模:介绍:WordEmbedding是一种将单词表示为低维稠密向量的技术。它通过学习单词在文本中的上下文关系,将其映射到一个连续的向量空间中。在这个向量空间中,相似的单词在空间中的距离也比较接近,具有相似含义的单词在空间中的方向也比较一致。WordEmbedding可以通过各种方法来实现,包括基于统计的方法(如Word2Vec和GloVe)和
- 知识图谱与语言预训练:深度融合的智能问答时代
cooldream2009
AI技术NLP知识知识图谱知识图谱人工智能预训练
目录前言1直接使用预训练模型vs.知识图谱与预训练相结合1.1直接使用预训练模型1.2构建知识图谱后与预训练相结合2预训练语言模型的发展历程2.1Word2Vec和GloVe2.2ELMo2.3BERT3知识图谱对预训练的助力3.1弥补低频实体信息的不足3.2提供领域知识的支持4典型知识驱动的语言预训练模型4.1ERNIE4.2KnowBERT4.3WKLM4.4K-Adapter结语前言在自然语
- word2vec工具学习笔记
适说心语
今天是第一次听说这个工具,本来是为了解决非目标客户的问题,但是要从头了解这个内容,所以边找资料边记录一下!一、简介Word2vec,是为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示
- 图解word2vec,入门自然语言处理必看
学术Fun
(关注'AI新视野'公众号,发送‘资料’二字,免费获取50G人工智能视频教程!)图解word2vec精翻版,加入了自己的理解,和稍微有点出入,http://jalammar.github.io/illustrated-word2vec/image词嵌入(embedding)是机器学习中最惊人的创造,如果你有使用过Siri、GoogleAssistant、Alexa、Google翻译,输入法打字预测
- Tensorflow 实现 Word2Vec
王小鸟_wpcool
今天学习了一下《Tensorflow实战》这本书中第7章内容,利用tensorflow实现word2vec。其实书中内容就是Tensorflow教程中的例子,现在挣钱真容易。附链接https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/examples/tutorials/word2vec/word2vec_basic.py代码
- 自然语言处理N天-Day0503句向量模型 Doc2Vec
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg说明:本文依据《中文自然语言处理入门实战》完成。目前网上有不少转载的课程,我是从GitChat上购买。第五课句向量模型Doc2VecDoc2VecDoc2Vec模型是在Word2Vec模型上提出的计算长文本向量的工具。Doc2vec接收一个由LabeledSentence对象组成的迭代器作为其构造函数的输入参数。其中,LabeledS
- 揭秘Word2Vec:探索语言的魔法世界
洞深视界
word2veceasyui人工智能机器学习深度学习git自然语言处理
欢迎来到Word2Vec的世界!在自然语言处理的舞台上,Word2Vec犹如一位神秘的魔术师,带领我们探索语言的魔法世界。今天,让我们一同踏上这段充满惊喜的旅程,揭秘Word2Vec的神秘面纱。背景:语言的奥秘语言是人类沟通交流的重要工具,但其中隐藏着许多奥秘。在过去,计算机很难理解和处理语言,直到Word2Vec的出现,才让计算机开始懂得了语言的奥秘。Word2Vec的基本原理Word2Vec是
- gensim模型(1)——Word2Vec
qqqh777
Word2Vec模型介绍Gensim的Word2Vec模型且展示其在LeeEvaluationCorpus上的用法。importlogginglogging.basicConfig(format='%(asctims)s:%(levelname)s:%(message)s',level=logging.INFO)如果你错过了提示,Word2Vec是基于神经网络的广泛使用的算法,通常被称为"深度学习
- 刘知远LLM——神经网络基础
李日音
神经网络人工智能深度学习
文章目录神经网络基础基本构成如何训练?Word2Vec例子负采样:循环神经网络RNN门控计算单元GRU长短时记忆网络LSTM遗忘门输入门输出门双向RNN卷积神经网络CNNpytorch实战神经网络基础基本构成全称:人工神经网络。启发于生物神经细胞单个神经元单层神经网络前向计算激活函数的作用:没有激活函数的话,多层神经网络就会退化为单层输出层线性输出:回归问题sigmoid:二分类softmax:多
- Gensim详细介绍和使用:一个Python文本建模库
Bigcrab__
Python库介绍和使用python
Gensim=“GenerateSimilar”一、安装二、文本预处理2.1中文语料处理2.2英文语料处理2.3BOW语料建立三、模型使用3.1word2vecThealgorithmsinGensim,suchasWord2Vec,FastText,LatentSemanticIndexing(LSI,LSA,LsiModel),LatentDirichletAllocation(LDA,Lda
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- 智慧海洋建设-Task3 特征工程
1598903c9dd7
关于本次智慧海洋特征构建分为时间类特征、分箱特征(x、y、v)、DataFrame特征(计数特征和偏移量特征)、统计特征(聚合)、embedding特征(word2vec、NMF)这几方面进行考虑的。分箱特征的重要性:一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。离散特征的增加和减少都很容易,易于模型的快速迭代;稀疏向量内积乘法运算速度快,计算结果
- Vision Transformer及其变体(自用)
ST-Naive
transformer深度学习人工智能
0回顾Transformer0.1encoder在正式开始ViT之前,先来复习一遍transformer的核心机制相关的文章有很多,我选了一遍最通俗易懂的放在这:Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT所谓注意力机制,就是Attention=∑similarity(Query,Key)*Value,Q可以理解为单词在当前的表示,K为单词的标签,V
- 学习知识记录
想努力的人
面试算法cnn深度学习tensorflow
1、nnlm神经网络语言模型:ANeuralProbabilisticLanguageModel------阅读笔记_hx14301009的博客-CSDN博客2、Word2vec的skipgram模型输入是中心词和背景词NLP之---word2vec算法skip-gram原理详解_Ricky-CSDN博客_skipgram层级的softmax:本质是将N分类问题转换成logN(底数为2)次的二分类
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- 利用Bert模型进行命名实体识别
刘单纯
之前两天也写了word2vec和Transformer,其实都是在为今天的内容做铺垫。最近正好使用bert做了命名实体识别项目,借这个契机分享出来,希望能帮到有需要的人。自然语言的表示之所以之前自然语言处理的发展没有达到CV领域,很大一部分原因是很难把抽象的语言用准确的数学方式表示。one-hot只能说对词进行编码,毫无“相似度”的概念,例如【川老师】和【特朗普】的距离与【川老师】和【苍老师】的距
- 【NLP】 Word2Vec模型 & Doc2Vec模型
Sonhhxg_柒
自然语言处理(NLP)自然语言处理word2vec机器学习
大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流个人主页-Sonhhxg_柒的博客_CSDN博客欢迎各位→点赞+收藏⭐️+留言系列专栏-机器学习【ML】自然语言处理【NLP】深度学习【DL】foreword✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。如果你对这个系列感兴趣的话,可以关注订阅哟Word
- 大模型|基础_word2vec
晓源Galois
word2vec人工智能自然语言处理
文章目录Word2Vec词袋模型CBOWContinuousBag-of-WordsContinuousSkip-Gram存在的问题解决方案其他技巧Word2Vec将词转化为向量后,会发现king和queen的差别与man和woman的差别是类似的,而在几何空间上,这样的差别将会以平行的关系进行表达。会使用滑动窗口的机制。滑动窗口内会有一个target目标词(上图蓝色部分),滑动窗口其他部分就是c
- 自然语言处理中的深度学习
qiufeng1ye
教材选用《动手学深度学习》,李沐等著;词嵌⼊(word2vec)⾃然语⾔是⼀套⽤来表达含义的复杂系统。把词映射为实数域向量的技术也叫词嵌⼊(wordembedding)。近年来,词嵌⼊已逐渐成为⾃然语⾔处理的基础知识。Word2vec⼯具包含了两个模型:跳字模型(skip-gram)和连续词袋模型(continuousbagofwords,简称CBOW)。跳字模型假设基于中⼼词来⽣成背景词,连续词
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri