有环链表的问题解决思路

问题:

  判断一个链表中是否有环。

分析:

  我们都知道,当一个链表中没有环时,我们使用一个指针能从头遍历到尾;当链表中有环时,链表会在环中旋转。

  当我们使用两个指针时【链表操作的常用技巧!】,可以设置快、慢两个指针。

  如果链表中不存在环,快指针肯定最终变为NULL;存在环的话,快指针和慢指针都会进入到环中,因为慢指针相对快指针静止,快指针相对对慢指针步伐为1,最终快指针一定能赶上慢指针。

  此方法时间复杂度为O(n),空间复杂度为O(1)

  2)使用快、慢指针。

复制代码
bool isHasCycle(Node* head) const
{
    if(head == NULL || head->next == NULL)
        return false;

    Node* slow = head;
    Node* fast = head->next;

    while(fast != NULL && fast->next != NULL)
    {
        fast = fast->next->next;
        slow = slow->next;

        if(fast == slow)
            return true;
    }

    return false;
}
复制代码

 

问题:

  寻找一个有环链表的第一个入环节点。

分析:

  2)当我们使用快慢指针时,两个节点会相遇。

  有环链表的问题解决思路_第1张图片

  假设直线阶段长度为L,两个指针的相遇点距环的起始点距离为T,这个环的长度为S。

  我们让慢指针从head处开始运动,每次向前走一步;快指针从head->next处开始运动,每次向前走两步。

  当两个指针相遇时,快指针旋转了m圈,慢指针旋转了n圈。

    (L + m×S + T - 1) / 2 = (L + n×S + T) 【时间相同】

  => (m - 2×n)×S = T + L + 1

  => (m - 2×n - 1)×S + S - T = L + 1

    显然,相遇后,让一个指针从链表起始处开始运动,另一个指针从相遇点的下一个节点开始运动。这样,两个指针会在链表的起始节点相遇。

复制代码
Node* first_Node_in_cycle(Node* head) const
{
    if(head == NULL || head->next == NULL)
        return false;

    Node* slow = head;
    Node* fast = head->next;

    while(fast != NULL && fast->next != NULL)
    {
        fast = fast->next->next;
        slow = slow->next;

        if(fast == slow)
            break;
    }

    fast = fast->next;
    slow = head;

    while(fast != slow)
    {
        fast = fast->next;
        slow = slow->next;
    }

    return fast;
}
复制代码


  问题:

    求有环链表的环的长度。

  解答:

    在前两问的基础之上。

    2)使用快、慢指针时,我们可以在指针相遇后,固定一个指针,然另一个指针运动。当两个指针再次相遇时,就是一圈的距离。

      时间复杂度O(n),空间复杂度O(1)。

参考文章:

https://www.cnblogs.com/carlsama/p/4127201.html

你可能感兴趣的:(算法实践)