- Python深度学习实践:神经网络在异常检测中的应用
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
Python深度学习实践:神经网络在异常检测中的应用关键词:深度学习,神经网络,异常检测,Python,TensorFlow,PyTorch,模型优化,实战案例摘要:本文深入探讨了深度学习在异常检测领域的应用。通过Python实现的神经网络,本文介绍了深度学习的基本概念、核心算法、模型优化方法,并提供了详细的实战案例,包括数据预处理、模型训练和评估。读者将了解如何使用深度学习技术检测金融欺诈、网络
- DeepSeek+Kimi
xjfgkf
mysqlsqliteoraclejson
DeepSeek与Kimi生成PPT全流程解析一、工具分工原理DeepSeek核心作用:生成结构化PPT大纲(擅长逻辑构建与内容优化)Kimi核心作用:将文本转换为视觉化PPT(提供模板库与排版引擎)二、操作步骤详解1.通过DeepSeek生成PPT大纲down输入提示词示例(需包含三要素)你是有10年经验的AI行业分析师,请为科技公司投资人制作一份30页的PPT,要求:首页包含主标题与3个核心论
- 不止排名,Google SEO 10 大核心心得分享
后端
原博客:https://bysocket.com/seo-tips-2025/在过去的一年中,我深入实践了GoogleSEO,积累了自己一些经验和看法。以下是我的实操心得,希望对大家有所帮助。1.SEO的本质:理解用户需求,提供有价值的内容SEO不仅仅是关键词堆砌或大量发布内容,而是要真正理解用户的搜索意图,提供他们需要的信息。就像写一本持续更新的畅销书,内容要有吸引力、易于获取,并值得推荐。2.
- 思考–如何学习陌生的知识
后知后觉的先行者
思考学习
思考–如何学习陌生的知识面对新知识的学习,可以遵循以下系统化的方法,既提高效率又减少迷茫感:一、明确学习目标:打破“学什么都要学全”的误区核心原则二八定律:80%的实用场景只需掌握20%的核心知识。场景驱动:明确“学这个知识要解决什么问题?”(例如:学Python是为了数据分析还是自动化办公?)。快速定位重点通过行业标杆案例、岗位JD或技术文档,提取高频关键词(如“神经网络”之于AI、“API调用
- idea 进行多处同时编辑
tkgup
业务开发常见问题解决idea
使用Alt+Shift+左键点击即可使用Alt+J可选中下一个相同的词使用Alt+Shift+J取消一个选中使用Ctrl+Alt+Shift+J可选中所有相同的词进行同时编辑使用Alt+Shift+Insert开启列选择模式
- 大模型中的Token究竟是什么?从原理到作用深度解析
自然语言处理算法人工智能
引言在人工智能领域,大型语言模型(LLM)如GPT-4、Claude等系统性地改变了人机交互方式。这些模型处理文本的核心单元被称为"Token",这个看似简单的概念实则蕴含复杂的工程设计和语言学原理。本文将深入解析Token的本质、技术实现及其在模型运作中的关键作用。Token化技术全景图核心处理流程原始文本→预处理→分词算法→词表映射→模型输入↓↓↓大小写转换子词拆分策略特殊Token添加标点规
- 普通人也能轻松掌握的20个DeepSeek高频提示词(2025版)
deepseek
一、基础原则1️⃣说人话最重要"不用专业术语,就像和朋友聊天一样描述需求"。❌️错误示范:"请用SWOT分析法输出新能源汽车行业报告"。✅正确示范:"我要给老板汇报比亚迪谈判进展,完全不懂电池技术,请用买菜大妈都能听懂的话说明:他们的核心技术强在哪?报价大概多少?谈判时怎么装专业?"。2️⃣场景化公式"我要做___(具体事项),给___(使用对象)看,重点突出___(核心需求),担心___(潜在问
- SEO新手操作实战精要
老陈头聊SEO
SEO其他
内容概要在搜索引擎优化领域建立系统认知是新手突破入门瓶颈的关键。本指南以实战操作为核心脉络,从工具选择到执行路径层层拆解:首先建立SEO基础工具库,涵盖关键词挖掘、流量分析及竞争监测三类必备系统;其次聚焦站内优化黄金框架,详解标题(Title)、描述(Description)、关键词(Keywords)的权重配比与语义关联技巧;同时规划外链建设策略,梳理权威平台资源池与内容植入方法论。配合百度站长
- Prompt工程指南:从入门到精通,手把手教你玩转AI大模型!
AI大模型-大飞
prompt人工智能大模型教程AI大模型开源chatgpt大模型
一、什么是Prompt?Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。任务:Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。指令:模型在生成文本时应遵循的指令是Prompt中的关键要素之
- 词向量Word Embedding
m0_60217276
机器学习word2vec
词向量词向量做的事情就是将词表中的单词映射为实数向量。one-hot编码one-hot对每个词进行编号,假设词表的长度为n,则对于每一个词的表征向量均为一个n维向量,且只在其对应位置上的值为1,其他位置都是0。问题:1.有序性问题:它无法反映文本的有序性。2.语义鸿沟:其无法通过词向量来衡量相关词之间的距离关系,无法反映词之间的相似程度。3.维度灾难:高维情形下将导致数据样本稀疏,距离计算困难,这
- DeepSeek 超实用 50 个提示词大公开!生活、学习、工作全能助手
碳基学AI
生活学习人工智能ai大数据深度学习知识图谱
大家,是不是常常在生活里被各种琐事搞得焦头烂额,学习时遇到难题找不到方向,工作中忙得晕头转向却没个好思路?别愁啦!今天我必须把这50个DeepSeek超实用提示词分享给大家。不管是生活里的鸡毛蒜皮,学习上的提升需求,还是工作中的棘手问题,它都能轻松拿捏。赶紧先码住,说不定下一秒就能派上用场!生活实用:一站式解决生活难题1、宝子们,有没有像我一样经常熬夜,结果熬出了深深的熊猫眼,第二天还没精神的?“
- 凤凰架构-向微服务迈进
七路灯
读书架构架构
周志明《凤凰架构:构建可靠的大型分布式系统》https://icyfenix.cn/向微服务迈进,目的->前提->边界->治理目录目的:微服务的驱动力前提:微服务需要的条件边界:微服务的粒度治理:理解系统复杂性静态的治理发展的治理软件研发中任何一项技术、方法、架构都不可能是银弹。假如只能用一个词来形容微服务解决问题的核心思想,笔者给的答案就是“分治”,这即是微服务的基本特征,也是微服务应对复杂性的
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- DeepSeek 提示词技巧深度解析:从原理到实践
悠悠空谷1615
经验分享深度学习语言模型
深度掌握AI交互:DeepSeek提示词技巧全解析突破认知:重新理解AI对话的本质在与DeepSeek等大语言模型交互时,我们需要建立全新的对话范式。不同于人类对话的模糊性与容错性,AI对话遵循"输入决定输出"的确定性原则。统计数据显示,经过专业提示词训练的用户,其获取有效答案的成功率可提升300%以上。要实现这种质的飞跃,需要掌握以下核心认知:1.信息解码机制:AI通过token化处理理解文本,
- DeepSeek赋能生活全场景:20个职场人/学生/宝妈必备AI实践指南
小小鸭程序员
javapythonspringcloud云原生kafka
2024春节AI圈顶流:国产大模型DeepSeek持续霸屏!除技术解析外,更值得关注的是其在实际生活场景中的落地应用。本文整理20个高价值使用姿势,助你快速解锁AI助手生产力!一、学习成长加速器1.智能简历优化师使用场景:输入基础工作经历,自动生成ATS友好型简历,附带岗位关键词匹配与成就量化建议高阶技巧:上传JD文件,获取定制化简历修改报告2.论文架构大师核心功能:根据研究主题自动生成三级大纲框
- 创建者模式——单例模式
yiyiqwq
软件设计模式单例模式java
3.1单例模式(Singleton)单例模式(Singleton)是一种非常简单且容易理解的设计模式。顾名思义,单例即单一的实例,确切地讲就是指在某个系统中只存在一个实例,同时提供集中、统一的访问接口,以使系统行为保持协调一致。Singleton一词在逻辑学中指“有且仅有一个元素的集合”,这非常恰当地概括了单例的概念,也就是“一个类仅有一个实例”。单例模式涉及到类负责创建自己的对象,同时保证只有该
- MLM: 掩码语言模型的预训练任务
XianxinMao
语言模型人工智能自然语言处理
MLM:掩码语言模型的预训练任务掩码语言模型(MaskedLanguageModel,MLM)是一种用于训练语言模型的预训练任务,其核心目标是帮助模型理解和预测语言中的上下文关系。以下是对这一概念的详细说明:基本定义:MLM是一种通过将输入文本中的部分词语随机掩盖(即用掩码标记替代),让模型在观察到其他未掩盖词语的情况下,预测这些被掩盖词的任务。任务流程:首先,将一段文本输入到模型中。该文本的一部
- 如何使用DeepSeek进行高效数据挖掘与分析
Small踢倒coffee_氕氘氚
笔记经验分享迭代器模式
##摘要随着大数据时代的到来,数据挖掘与分析技术在各行各业中扮演着越来越重要的角色。DeepSeek作为一种先进的数据挖掘工具,能够帮助用户从海量数据中提取有价值的信息。本文将详细介绍DeepSeek的功能、使用方法及其在实际应用中的优势,旨在为用户提供一份全面的使用指南。##关键词DeepSeek、数据挖掘、数据分析、机器学习、大数据##引言###背景在当今信息爆炸的时代,数据已成为企业决策的重
- 清华大学《DeepSeek学习手册》(全6册),一键整合安装包本地部署教程
2501_90737257
人工智能pdf
资源链接:https://pan.quark.cn/s/e9b7230b1538清华这个手册真是与众不同!它先是给你讲清楚原理,然后手把手教你怎么科学地使用。它不只是告诉你怎么提问,还会告诉你为啥要这么问,这不就是教你怎么掌握提示词的底层逻辑嘛。这才是真正的“授人以渔”,太有用了!清华的专家们毫无保留,分享了超多实用技巧,从避免AI幻觉的小窍门,到设计超棒提示语的秘籍,共104页,全是能直接上手的
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- AI辅助的企业估值报告生成器
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能ai
AI辅助的企业估值报告生成器关键词AI辅助估值企业估值报告数据处理机器学习算法报告生成器摘要本文将探讨如何利用人工智能技术辅助企业估值报告的生成。通过分析估值报告的重要性、AI技术在估值报告中的应用场景、估值模型与数据处理方法,以及机器学习算法在估值中的应用,本文旨在为企业和投资者提供一个高效、准确、可视化的估值报告生成解决方案。同时,本文还将介绍一个估值报告生成器的实现过程,并通过实际案例进行分
- 杰里米格兰瑟姆的资产定价理论
AI大模型应用之禅
DeepSeeklinux服务器运维ai
杰里米格兰瑟姆的资产定价理论关键词:资产定价理论、资本资产定价模型、套利定价理论、行为金融、数学模型摘要:杰里米格兰瑟姆的资产定价理论是现代金融领域的重要理论基础。本文将从资产定价理论的起源与发展、资本资产定价模型(CAPM)、套利定价理论(APT)、行为金融与资产定价等方面展开深入探讨,旨在全面解析格兰瑟姆的理论贡献和实际应用。目录大纲设计在撰写关于《杰里米格兰瑟姆的资产定价理论》的技术博客之前
- python读取word文档结构图_python根据文章标题内容自动生成摘分享的实例
weixin_39997664
如何用Python玩转TF-IDF之寻找相似文章并生成摘要应用1:关键词自动生成核心思想是对于某个文档中的某个词,计算其在这个文档中的标准化TF值,然后计算这个词在整个语料库中的标准化IDF值。在这里,标准化是说对原始的计算公式进行了一些变换以取得更好的衡量效果,并避免某些极端情况的出现。python从一个文件按文章标题把对应内容存为另外一问题如标题,例如有文件“A.txt”里面内容如上图,需按三
- LeetCode 49:字母异位词分组
s_Shune
LeetCodeleetcode
目录LeetCode49:字母异位词分组题目描述解题LeetCode49:字母异位词分组题目描述给定一个字符串数组,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。示例:输入:[“eat”,“tea”,“tan”,“ate”,“nat”,“bat”]输出:[[“ate”,“eat”,“tea”],[“nat”,“tan”],[“bat”]]说明:所有输入均为小写字母。不考虑答案输
- 【Weaviate RAG】OpenAI+Weaviate RAG实践
星星点点洲
向量数据库AIGC
检索引擎主要用于通过OpenAIAPI和向量数据库进行查询和生成响应。主要功能包括:生成响应:使用OpenAI的GPT-3.5模型生成流式响应。混合检索:结合向量和关键词检索,获取相关文档块,并通过OpenAI生成最终响应。OpenAI查询:根据查询字符串和聊天历史,生成更复杂的查询并调用OpenAIAPI。文档检索:根据ID或查询字符串检索单个或多个文档。控制流图flowchartTDA[开始]
- LeetCode49:字母异位词分组
向阳1218
leetcode算法leetcode
原题地址:49.字母异位词分组-力扣(LeetCode)题目描述给你一个字符串数组,请你将字母异位词组合在一起。可以按任意顺序返回结果列表。字母异位词是由重新排列源单词的所有字母得到的一个新单词。示例1:输入:strs=["eat","tea","tan","ate","nat","bat"]输出:[["bat"],["nat","tan"],["ate","eat","tea"]]示例2:输入:
- LeetCode 热题100 438. 找到字符串中所有字母异位词
_Itachi__
LeetCodeleetcodelinux算法
LeetCode热题100|438.找到字符串中所有字母异位词大家好,今天我们来解决一道经典的算法题——找到字符串中所有字母异位词。这道题在LeetCode上被标记为中等难度,要求我们在字符串s中找到所有是p的异位词的子串,并返回这些子串的起始索引。下面我将详细讲解解题思路,并附上Python代码实现。题目描述给定两个字符串s和p,找到s中所有是p的异位词的子串,返回这些子串的起始索引。不考虑答案
- LeetCode 热题 100:02 字母异位词分组
静心观复
leetCode热题100算法leetcode职场和发展
题目描述力扣第49题「字母异位词分组」要求如下:给定一个字符串数组strs,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。示例1:输入:strs=["eat","tea","tan","ate","nat","bat"]输出:[["bat"],["nat","tan"],["ate","eat","tea"]]示例2:输入:strs=[""]输出:[[""]]示例3:输入:st
- 【AI】手把手教你用Dify+Agent搭建数据查询AI应用,实现自然语言流畅的和AI对话,无感切换数据源!大模型|LLM|Agent
厦门德仔
AI人工智能服务器运维
手把手教你用Dify+Agent搭建数据查询AI应用,实现自然语言流畅的和AI对话,无感切换数据源!大模型|LLM|Agent一、为何选择Agent?二、工具三、需求:基于Agent构建的聊天式数据查询应用四、Agent主要内容提示词:上下文工具五、效果测试一、为何选择Agent?Agent最大的优势:可以使用聊天的方式获取信息,大幅增加了灵活度,进行多维度的提问,结合提示词、上下文、工具执行所需
- Leetcode 49: 字母异位词分组
越哥聊IT
LeetCode算法面试通关leetcode算法职场和发展
Leetcode49:字母异位词分组这是一道经典的哈希表与字符串操作相关的题目,考察快速分组和使用数据结构的能力。所谓字母异位词,是指由相同的字母通过重新排列形成的不同单词。题目要求将一组字符串按照字母异位词分组。问题描述给定一个字符串数组strs,将词组按照字母异位词进行分组,返回所有分组后的结果。字母异位词具有相同的字符,只是排列顺序不同。输入输出示例:输入:strs=["eat","tea"
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt