Bagging,Boosting,Random Forest

       由于近期研究课题的变化,所以又涉猎的新的知识领域,本文只是对三个容易混淆的算法进行了汇总,其内容都是参考的其他博主的内容,本人只是编制在了一起。主要内容如下:

Bagging即套袋法,其算法过程如下:

1.从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法(也叫自助采样)抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集(k个训练集之间是相互独立的)。自助采样过程还给Bagging带来了另一个优点:由于每个基学习器只使用了初始训练集约63.2%的样本,剩下约36.8%的样本可用作验证集来对泛化性能进行“包外估计”(out-of-bag estimate)。

2.每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)

3.对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

 

Boosting:

AdaBoosting方式每次使用的是全部的样本,每轮训练改变样本的权重。下一轮训练的目标是找到一个函数f 来拟合上一轮的残差。当残差足够小或者达到设置的最大迭代次数则停止。Boosting会减小在上一轮训练正确的样本的权重,增大错误样本的权重。(对的残差小,错的残差大)

梯度提升的Boosting方式是使用代价函数对上一轮训练出的模型函数f的偏导来拟合残差。

 

Bagging,Boosting二者之间的区别:

1.样本选择上:Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。

2.样例权重:Bagging:使用均匀取样,每个样例的权重相等。Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。

3.预测函数:Bagging:所有预测函数的权重相等。Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。

4.并行计算:Bagging:各个预测函数可以并行生成。Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

注:参考https://www.cnblogs.com/earendil/p/8872001.html

 

随机森林:

1.随机属性选择:RF在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入随机属性选择。传统决策树在选择划分属性时是在当前结点的属性集合中选择一个最优属性;而在RF中,基决策树的每个结点,先从该结点的属性集合(假定有d个属性)中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分。这里的参数k控制了随机性的引入程度: 若令k=d,则基决策树的构建与传统决策树相同;若令k=1,则是随机选择一个属性用于划分;一般情况下,推荐值k=log2d。

2.特征重要性计算:计算某个特征X的重要性时,具体步骤如下:

1)对每一颗决策树,选择相应的袋外数据(out of bag,OOB)​计算袋外数据误差,记为errOOB1。所谓袋外数据是指,每次建立决策树时,通过重复抽样得到一个数据用于训练​决策树,这时还有大约1/3的数据没有被利用,没有参与决策树的建立。这部分数据可以用于对决策树的性能进行评估,计算模型的预测错误率,称为袋外数据误差。这已经经过证明是无偏估计的,所以在随机森林算法中不需要再进行交叉验证或者单独的测试集来获取测试集误差的无偏估计。

2)随机对袋外数据OOB所有样本的特征X加入噪声干扰(可以随机改变样本在特征X处的值),再次计算袋外数据误差,记为errOOB2。

​3)假设森林中有N棵树,则特征X的重要性=∑(errOOB2-errOOB1)/N。这个数值之所以能够说明特征的重要性是因为,如果加入随机噪声后,袋外数据准确率大幅度下降(即errOOB2上升),说明这个特征对于样本的预测结果有很大影响,进而说明重要程度比较高。

注:参考https://blog.csdn.net/u012151283/article/details/78104678

你可能感兴趣的:(Bagging,RandomForest,Boosting)