- Ollama 部署 DeepSeek - r1 教程:Windows 与 Linux 篇
Fgaoxing
windowslinux人工智能
在人工智能技术飞速发展的今天,能够在本地部署并使用先进的模型成为许多技术爱好者和专业人士的追求。DeepSeek-r1以其出色的性能备受关注,借助Ollama工具,我们可以方便地在Windows和Linux系统上完成部署。下面就为大家详细介绍具体步骤。一、准备工作在开始部署之前,需要确保已经安装了Ollama。如果尚未安装,请按照以下对应系统的安装方法进行操作。(一)Windows系统安装Olla
- M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
UnknownBody
LLMDailyLLMPromptprompt语言模型人工智能
本文是LLM系列文章,针对《M-Ped:Multi-PromptEnsembleDecodingforLargeLanguageModels》的翻译。M-Ped:大型语言模型的多提示集成解码摘要1引言2方法3实验4研究5相关工作6结论摘要随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合
- SlimGPT: Layer-wise Structured Pruning for Large Language Models
UnknownBody
LLMDailyLLMPruning剪枝语言模型人工智能
本文是LLM系列文章,针对《SlimGPT:Layer-wiseStructuredPruningforLargeLanguageModels》的翻译。SlimGPT:大型语言模型的分层结构化修剪摘要1引言2相关工作3前言4方法5实验6结论摘要大型语言模型(LLM)因其在各个领域的卓越能力而受到广泛关注,其巨大的参数规模为实际部署带来了挑战。结构化修剪是一种平衡模型性能和效率的有效方法,但在计算资
- RabbitMQ架构设计原理
T_karine
RabbitMQjava开发语言
一、什么是消息中间件消息中间件基于队列模型实现异步/同步传输数据。作用:可以实现支撑高并发、异步、解耦、流量削峰。优点:由于RabbitMQ是erlang语言开发的,具有天生抗高并发的性能,吞吐量达到万级。1、什么是异步将一个任务中比较耗时的业务逻辑代码使用异步的方式去执行,可以提高响应速度。2、什么是解耦耦合:所谓耦合,指系统各功能、模块之间具有依赖性,依赖性越强、耦合度就越高,维护成本也就越高
- WebSocket与http协议对比
CY_U
websockethttp网络协议java
HTTP与WebSocket协议深度对比一、协议基础特性对比特性HTTP/1.1WebSocket(RFC6455)协议层定位应用层协议应用层协议(基于HTTP升级机制)传输层依赖TCPTCP默认端口80(HTTP)/443(HTTPS)80(WS)/443(WSS)通信模型请求-响应(半双工)全双工双向通信连接生命周期短连接(默认)或长连接(Keep-Alive)持久化长连接头部开销每个请求携带
- 星际智慧农业系统(SAS),智慧农业的未来篇章
暮雨哀尘
新月篇python数据结构pandasflaskjson前端后端
新月人物传记:人物传记之新月篇-CSDN博客相关文章:星际战争模拟系统:新月的编程之道-CSDN博客新月智能护甲系统CMIA--未来战场的守护者-CSDN博客“新月智能武器系统”CIWS,开启智能武器的新纪元-CSDN博客目录星际智慧农业系统(StellarAgriTechSystem)说明手册一、系统概述二、系统架构三、模块说明四、系统运行说明五、系统优化建议六、常见问题解答七、技术支持星际智慧
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
Ps.729
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- 有用的知识又增加了:如何让代码全面适配 Swift 6
大熊猫侯佩
Apple开发入门Swift6结构化并发数据竞争DataRaceActor结构和类MainActor
概述自从Swift并发模型首次引入async和await关键字以来,我就迫不及待的开始使用它们来进行异步代码的开发了。随着时间的推移,Swift并发模型变得越来越强大,它通过让Swift编译器识别潜在问题,提供了可靠的数据竞争安全保障。然而,在切换到Swift6版本后,大家面对代码中自动生成的所有警告和错误可能会显得束手无策。这里,我们将分享一些在代码库中适配Swift6严格并发模式(Strict
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- 《Inside VCL(深入核心——VCL架构剖析)》.(李维) 一
liang08114
delphiVCL
一、回到从前:1.1、多任务操作系统是如何设计和实现的?1.1.1、系统——多个应用程序方案1:(系统不断读取应用程序状态)系统通过大型循环(Loop)不断坚持么一个恶用用程序是否触发了特定的事件。方案2:(事件驱动模型——事件/消息处理模型)执行环境将事件转换成代表事件的消息,然后发送给对应的应用程序。//消息大概格式TMyMessage=packedrecord//用来存储事件信息Messag
- 企业怎么做知识管理
企业知识管理(KM)是指通过有效的策略、工具和文化建设,帮助企业将其宝贵的知识资产转化为能够提高竞争力和创新力的资源。知识管理的核心目标是促进知识的共享、保存、应用和创造,提升组织效率,减少重复劳动,并推动持续创新。要做好的知识管理,首先需要建立明确的目标、建立知识共享的文化,并选择合适的工具和方法来进行执行。一、知识管理的基本概念与目标知识管理作为一个综合性的过程,其核心目标是利用企业内部的知识
- 交易系统:退款单模型设计详解
java
大家好,我是汤师爷~和退款单作为整个交易逆向系统的核心,支撑着售后管理环节。售后域核心概念模型1、退款单退款单是记录和跟踪退款处理过程的核心业务单据,包含以下关键信息:租户ID:标识所属商户或组织退款单ID:退款单的唯一标识原订单ID:关联的原始订单业务类型:仅退款、退货退款等退款类型:如全额退款、部分退款、按商品退款等创建时间:退款单生成的时间退款状态:反映当前售后处理阶段退款原因:记录具体退款
- 计算机基础---从输入 URL 到页面展示到底发生了什么?
淡写青春209
java
从输入URL到页面展示到底发生了什么?基础版本:在浏览器中输入指定网页的URL。浏览器通过DNS协议,获取域名对应的IP地址。[[八股文复习(总)#DNS解析的过程是什么样的?]]浏览器根据IP地址和端口号,向目标服务器发起一个TCP连接请求。[[#建立连接-TCP三次握手]]浏览器在TCP连接上,向服务器发送一个HTTP请求报文,请求获取网页的内容。服务器收到HTTP请求报文后,处理请求,并返回
- 马尔科夫链(Markov Chain)没有发射概率 B
苏西月
概率论
1.马尔科夫链的定义马尔科夫链是一种序列模型,其中状态是完全可见的,没有“隐藏”部分。它的转移是根据当前状态决定的,只关心当前状态转移到下一个状态的概率。其核心是状态转移概率矩阵AAA。核心特点:只关注状态之间的转移,不涉及观察值(观测值)的生成。数学定义:如果在时间ttt的状态为XtX_tXt,那么XtX_tXt的分布只取决于Xt−1X_{t-1}Xt−1,即满足马尔科夫性:P(Xt∣Xt−1,
- 马尔科夫链与隐马尔可夫模型的区别
苏西月
机器学习人工智能
1.马尔科夫链的状态转移概率计算对于马尔科夫链,状态是完全可见的,所以我们可以直接计算转移概率aija_{ij}aij(从状态iii转移到状态jjj的概率)。公式aij=C(i→j)∑q∈QC(i→q)a_{ij}=\frac{C(i\toj)}{\sum_{q\inQ}C(i\toq)}aij=∑q∈QC(i→q)C(i→j)的含义:C(i→j)C(i\toj)C(i→j):表示从状态iii转移
- 使用支持向量机和朴素贝叶斯对文本分类
SSeaflower
支持向量机分类算法机器学习python
一、支持向量机文本分类1.1支持向量机分类器(SVC)支持向量机分类器(SupportVectorClassifier),缩写为SVC。SVC是sklearn.svm模块的一部分,提供了对支持向量机(SVM)算法的实现。SVM是一种监督学习模型,用于分类和回归任务。SVC是SVM用于分类的实现。1.2SVC的用法及参数通过以下方式创建SVC对象并进行训练:fromsklearn.svmimport
- 运行megatron框架的运行环境
David's Code
自然语言处理机器学习
megatron是什么,为什么要用主要是在实现Yuan1.0大规模模型时,他们引用了Nvidia开发的megatron这个框架,因为这个框架就是为了分布式多卡环境而设计的,而要上大参数量的模型时要获得比较可观的速度就避免不了要上这个框架。此处github上的megatron官方介绍。配置使用megatron的注意要注意的是这个框架应用了Nvidia自己开发的Apex工具,于是要求你的其他工具都得给
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- Megatron:深度学习中的高性能模型架构
gs80140
基础知识科谱AI机器学习人工智能
Megatron:深度学习中的高性能模型架构Megatron是由NVIDIA推出的深度学习大规模预训练模型框架,主要针对大规模Transformer架构模型的高效训练与推理。Megatron大多用于GPT(生成式预训练模型)、BERT等Transformer模型的预训练,擅长在大规模数据集和高性能计算资源上进行训练。Megatron的主要特点1.超大模型的高效训练模型并行(ModelParalle
- 对领域驱动设计(DDD)的学习成果
huaishu
架构
领域驱动设计之领域模型2004年EricEvans发表Domain-DrivenDesign–TacklingComplexityintheHeartofSoftware(领域驱动设计),简称EvansDDD。领域驱动设计分为两个阶段:以一种领域专家、设计人员、开发人员都能理解的“通用语言”作为相互交流的工具,在不断交流的过程中不断发现一些主要的领域概念,然后将这些概念设计成一个领域模型;由领域模
- 使用Colpali架构掌握多模态RAG技术
大模型之路
RAGRAG多模态多模态RAG检索增强生成LLM
传统的LLM面临着“幻觉”问题,即它们可能生成听起来合理但实际上错误或未经证实的信息。为了解决这个问题,检索增强生成(RAG)模型应运而生。RAG(语义缓存:提升RAG性能的关键策略)通过将LLM的生成能力与外部知识检索系统相结合,实现了更准确、更可靠的输出。然而,传统的RAG主要局限于文本数据,无法充分利用多模态信息。为了应对这一挑战,多模态RAG应运而生,其中Colpali架构成为这一领域的佼
- tf.Keras (tf-1.15)使用记录4-model.fit方法及其callbacks参数
普通攻击往后拉
NN技巧tf.keraskeras人工智能深度学习
model.fit()方法是TensorFlowKeras中用于训练模型的核心方法。其中里面的callbacks参数是实现模型保存、监控、以及和tensorboard联动的重要API1model.fit()方法的参数及使用必需参数x:训练数据的输入。可以是NumPy数组、TensorFlowtf.data.Dataset、Python生成器或keras.utils.Sequence实例。y:训练数
- 小南每日 AI 资讯 |美国与日本企业联合投资“星际之门”项目| 罗永浩老师最新初创项目上线! | 25/01/24
小南AI学院
人工智能microsoft
近期人工智能(AI)领域的重要动态随着人工智能技术的迅猛发展,多个领域涌现出令人瞩目的创新。以下是近期AI领域的几项重大进展,涵盖技术创新、行业合作以及AI在各个领域的应用:1.AI技术创新与产品发布DeepSeek发布开源模型R1,挑战传统开发模式中国初创公司深度求索(DeepSeek)于1月27日发布开源AI模型R1。该模型以低成本实现接近OpenAIGPT-3的性能,打破了“越大越好”的传统
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- Stable Diffusion 3 与 OpenAI 的 DALL-E 3 谁才是AI绘画的扛把子?
kcarly
杂谈StableDiffusion使用stablediffusionAI作画
StableDiffusion3和OpenAI的DALL-E3是当前最顶尖的两种AI图像生成模型,它们在技术架构、应用场景和性能表现上各有特点。以下从多个角度详细比较这两种模型:1.开发背景与架构StableDiffusion3是由StabilityAI开发的开源模型,基于扩散Transformer架构和流匹配(FlowMatching)技术,支持多种参数配置(从800M到8B),能够满足多样化的
- Stable Diffusion 3.5 正式发布!免费开源,堪称最强AI文生图模型,附本地安装和在线使用教程
Qingmu2024
AIGC(文本图像视频)特训营人工智能pythonstablediffusion
关键要点:10月22日,stability.ai重磅推出StableDiffusion3.5,号称迄今为止最强大的文生图模型。此次公开版本包括多个模型变体,其中有StableDiffusion3.5Large和StableDiffusion3.5LargeTurbo。此外,StableDiffusion3.5Medium将于10月29日发布。这些模型在尺寸方面具有高度可定制性,可在消费级硬件上运行
- Stable Diffusion创始人:DeepSeek没有抄袭!
Datawhale
stablediffusion人工智能
Datawhale分享观点:EmadMostaque,编译:Datawhale视频中英对照如下:Distillationisnothingnew,andthere'snowaytokindofstopthisfromthemodelbasis.蒸馏技术并不是什么新事物,而且从模型的角度来看,没有办法完全阻止这种情况的发生。Butifyouactuallylookatwhatthepapersays
- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 什么是MOE架构?哪些大模型使用了MOE?
明哲AI
AIGC架构人工智能大模型MOE
在人工智能快速发展的今天,大语言模型(LLM)的规模越来越大,参数量动辄上千亿甚至万亿。然而,更大的模型往往意味着更高的计算成本和更多的资源消耗。混合专家模型(MixtureofExperts,简称MoE)作为一种创新的架构设计,为解决这一难题提供了一个优雅的解决方案。什么是混合专家模型?想象一下,如果把一个大语言模型比作一所综合性大学,传统的模型就像是让所有教授(参数)都参与每一次教学活动。而M
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end