- Delta视觉定位系统
东城十三
vuca数码相机计算机视觉目标跟踪算法人工智能机器学习
Delta视觉定位系统软件应用背景Delta机器人以并联构型实现“轻量、高速、高精度”三位一体,成为高速分拣、精密装配、食品包装等领域的佼佼者。然而,其卓越的物理性能要转化为实际作业中的高精度定位取放能力,视觉定位系统是不可或缺的“眼睛”和“导航员”。尤其在面对高速运动目标或随机摆放(无序)物体的复杂场景时,视觉系统是实现高效、精准作业的核心技术保障。通过机器视觉实时识别目标物体的位置与姿态,引导
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- 【C# + HALCON 机器视觉】机器视觉在汽车内饰板塑料部件装配中的实战应用
AI_DL_CODE
机器视觉:C#+HALCONc#HALCON机器视觉汽车零部件装配内饰装配形状匹配人机交互
摘要:本文聚焦C#与HALCON技术在汽车内饰板塑料部件自动化装配领域的深度应用,详细阐述基于形状匹配算法的视觉定位技术、C#开发的人机交互界面及设备通信集成方案。通过完整的实操流程和代码示例,展示如何解决传统人工装配精度不稳定的问题,实现装配效率提升35%、良品率从92%提升至98%的显著成效,为汽车制造行业自动化升级提供技术参考。文章目录【C#+HALCON机器视觉】机器视觉在汽车内饰板塑料部
- LabVIEW工业指针仪表检测
LabVIEW开发
LabVIEW开发案例labview深度学习LabVIEW开发案例
用LabVIEW融合深度学习与机器视觉技术,构建适用于复杂工业环境的多类指针式仪表自动检测系统。通过集成品牌硬件与优化算法架构,实现仪表实时定位、图像增强、示数读取全流程自动化,解决传统人工巡检效率低、误差大的问题,满足煤矿、变电站等场景的智能化监测需求。应用场景工业设备监控:煤矿通风设备压力表、变电站电压电流表、集气站流量仪表等圆形指针式设备的实时状态监测。恶劣环境检测:适用于高温、高压、粉尘或
- 2025——》机器视觉之opencv/图片和视频的加载和显示基本知识详解
下面我将详细介绍OpenCV中图片和视频加载与显示的基本知识。一、OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个广泛用于计算机视觉任务的开源库,支持多种编程语言(如Python、C++),提供了丰富的图像处理和计算机视觉算法。二、图片操作基础1.图片的加载pythonimportcv2#加载图片image=cv2.imread('example
- 机器视觉工程师如何进行图像去噪和增强
zhangzhechun_02
运维深度学习人工智能机器人自动化
python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位C#视觉应用开发问题系列c#串口应用开发问题系列microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析
- 机器视觉工程师如何进行条码与二维码识别优化
zhangzhechun_02
自动化运维深度学习人工智能机器人
python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位C#视觉应用开发问题系列c#串口应用开发问题系列microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析
- 使用Halcon进行图像预处理的策略
AI_Guru人工智能
计算机视觉图像处理人工智能
图像预处理是机器视觉系统中的一个关键步骤,它有助于提高图像质量,从而使得后续的图像分析和特征提取更加准确。在Halcon中,图像预处理通常包括滤波、对比度增强、归一化、边缘增强等操作。以下是一些使用Halcon进行图像预处理的策略,以及相应的示例代码。图像预处理策略滤波:去除图像噪声,如高斯滤波、中值滤波等。对比度增强:提高图像的对比度,如直方图均衡化、对比度限制自适应直方图均衡化(CLAHE)。
- Halcon 图像预处理算子
、。纯牛奶最单纯* ̄▽ ̄*
计算机视觉人工智能图像处理
在机器视觉领域,图像的预处理算法十分重要。对于一些成像质量较差,受噪声影响较大的场景中,为保证视觉测量,定位,检测效果的稳定性。、往往第一步就是对图像做处理,这里对常用的预处理算法做总结。*腐蚀图像增加暗部,减少亮部gray_erosion_rect(Image,ImageMin,11,11)*膨胀图像增加增加,减少暗部gray_dilation_rect(Image,ImageMax,11,11
- 图像基础算法学习笔记
jerry201108
视觉基础知识学习笔记计算机视觉
目录概要一、图像采集二、图像标注四、图像几何变换五、图像边缘检测Sobel算子Scharrt算子Laplacian算子Canny边缘检测六、形态学转换十三、图像去噪概要参考书籍:《机器视觉与人工智能应用开发技术》廖建尚,钟君柳出版时间:2024-02-01图像采集图像标注:绘制直线、矩阵、圆形、椭圆和多边形图像灰度转换:灰度化、二值化等图像转换方法图像几何变换:图像旋转、图像镜像、图像缩放、图像透
- 探索大规模实例分割新天地 —— LVIS API深度解析与应用推广
芮奕滢Kirby
探索大规模实例分割新天地——LVISAPI深度解析与应用推广去发现同类优质开源项目:https://gitcode.com/在机器视觉领域,数据集的丰富性和多样性是推动技术进步的关键。LVIS(LargeVocabularyInstanceSegmentation),以其独特的名字和深远的意义,在实例分割界掀起了一场革新风暴。LVIS,这个名字发音为“el-vis”,不仅仅是一个数据集,更是一套强
- 受大脑启发的人工智能在令人震惊的视觉突破中学会像人类一样看东西
大咖分享课
人工智能
一种名为Lp-Convolution的新型受大脑启发的AI方法通过动态重塑CNN过滤器来增强图像识别能力,将生物现实性与改进的性能和效率相结合。IBS-Yonsei研究团队在ICLR2025上介绍了一种新颖的Lp-Convolution方法。延世大学基础科学研究所(IBS)和马克斯·普朗克研究所的研究团队开发了一种新的人工智能(AI)技术,使机器视觉更接近人脑处理视觉信息的方式。这种被称为Lp-C
- 机器视觉开发-使用yolo训练和验证自己的模型
派葛穆
YOLO深度学习机器学习
创建一个文件夹,包含如下子目录,images存放训练(train)和验证图片(val),一般是8:2的数量比例,labels存放对应的yolo格式内容的标注文件(与图片同名.txt)。创建一个.yaml格式的配置文件,如Goods.yamlpath:D:\Desktop\Python文件\仿真单件分离系统\Goods#数据集根路径train:images/train#训练集路径val:images
- 【MATLAB源码】机器视觉与图像识别技术(4)---模式识别与视觉计数
§ꦿCFོ༉
机器视觉与图像识别技术计算机视觉算法人工智能图像处理matlab深度学习
系列文章目录第一篇文章:【MATLAB源码】机器视觉与图像识别技术—视觉系统的构成(视频与图像格式转换代码及软件下载)第二篇文章:【MATLAB源码】机器视觉与图像识别技术(2)—图像分割基础第三篇文章:【MATLAB源码】机器视觉与图像识别技术(2)续—图像分割算法第四篇文章:【MATLAB源码】机器视觉与图像识别技术(3)—数字形态学处理以及图像特征点提取模式识别与视觉计数
- 基于机器视觉的水果分拣系统-分拣终端设计(源码+万字报告+讲解)
炳烛之明科技
人工智能
目录摘要1Abstract1第1章绪论21.1课题研究背景与意义21.2水果分拣系统研究现状31.3水果分拣系统应用前景4第2章系统设计方案42.1水果分拣终端总体框图42.2系统研究内容及设计要求52.3方案整体设计5第3章系统硬件电路设计63.1总体硬件框图63.2主控芯片及其最小系统73.3直流电机及其驱动73.4机械臂设计83.5WiFi模块8第4章系统软件设计84.1总体软件设计框图84
- HALCON 深度学习训练 3D 图像的几种方式优缺点
LeonDL168
Halcon深度学习3d人工智能HALCON训练3D图像深度学习训练3D图像HALCONpython
HALCON深度学习训练3D图像的几种方式优缺点**在计算机视觉和工业检测等领域,3D图像数据的处理和分析变得越来越重要,HALCON作为一款强大的机器视觉软件,提供了多种深度学习训练3D图像的方式。每种方式都有其独特的设计思路和应用场景,了解它们的优缺点有助于根据具体需求选择最合适的训练方法。基于体素化的训练方式优点数据结构规整:体素化将3D图像转换为类似3D网格的数据结构,这种规整的数据形式能
- 树莓派摄像头使用(rpicam-apps)
城城000
数码相机
摄像头简介树莓派摄像头是一种用于树莓派的高质量摄像头模块,可用于拍摄照片和录制视频。它支持多种分辨率和帧率选项,具有自动曝光和自动白平衡功能,可通过树莓派的GPIO接口连接和控制。树莓派摄像头模块广泛应用于树莓派项目中,如视频监控、机器视觉、无人机和智能家居等领域。硬件连接把树莓派摄像头连接到树莓派中间那里标有camera的接口(注意不是后面的显示器接口)检查是否连接成功打开终端输入以下命令rpi
- 使用MATLAB和Simulink来设计并仿真一个智能家居基于机器视觉的安全监控系统
amy_mhd
matlab智能家居开发语言
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与行为识别第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项智能家居中基于机器视觉的安全监控系统通过摄像头捕捉图像,并利用图像处理和机器学习算法来分析这些图像,以实现诸如入侵检测、异常行为识别等功能。这种系统可以极大
- 深入剖析ZYNQ Linux动态PL配置:xdevcfg驱动创新实践指南
芯作者
D1:ZYNQ设计fpga开发
一、ZYNQ动态重配置技术解析1.1可编程逻辑的革命性价值XilinxZYNQ系列SoC的划时代设计将ARM处理系统(PS)与FPGA可编程逻辑(PL)深度融合,创造出独特的异构计算架构。传统FPGA开发模式中,比特流烧写需要停机操作,而动态重配置技术彻底打破了这一限制,使得:工业设备可在线切换通信协议(Modbus/Profinet/EtherCAT)机器视觉系统动态加载不同图像处理流水线5G基
- 老司机机器视觉工程师也会翻车,机器视觉2D高精度定位引导,机器视觉2D高精度测量为什么高手都用黑白相机(工业相机,智能相机)
视觉人机器视觉
杂说数码相机
机器视觉定位引导领域,专业工程师更倾向于选择黑白工业相机而非彩色相机,这一选择基于其在精度、效率和稳定性上的显著优势。以下是核心原因的分析:对比度强化与细节凸显灰度信息更纯粹:黑白相机仅捕捉物体表面的明暗变化(灰度值),消除了色彩信息对边缘轮廓的干扰。例如,在金属零件定位中,划痕、边缘或标记在黑白图像中会因灰度差异被显著放大,更易被算法识别。抗光照干扰性强:工业现场常存在不均匀光照或反光(如金属、
- 基于机器视觉的工作分拣控制系统(源码+万字报告+部署讲解等)
炳烛之明科技
人工智能
第1章绪论31.1课题来源31.2课题研究的目的和意义31.3国内外研究现状41.3.1国内研究现状41.3.2国外研究现状51.3.3国内外市场现状对比5第二章工件机器人分拣系统62.1工件机器人分拣系统的构成62.2视觉引导技术的介绍7第三章系统硬件的选择及系统硬件电路73.1系统硬件的选择73.1.1工业相机的选择73.1.2光源的选择83.1.3分拣机器人的选择93.1.4车轮驱动方式的选
- 毕业设计项目 LSTM股价预测
DD项目分享家
毕业设计python毕设
0简介今天学长向大家介绍一个机器视觉的毕设项目毕业设计项目分享LSTM股价预测项目运行效果:毕业设计lstm股价预测项目分享:见文末!1LSTM神经网络长短期记忆(LSTM)神经网络属于循环神经网络(RNN)的一种,特别适合处理和预测与时间序列相关的重要事件。以下面的句子作为一个上下文推测的例子:“我从小在法国长大,我会说一口流利的??”由于同一句话前面提到”法国“这个国家,且后面提到“说”这个动
- 具身智能与客观世界的交互
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍在人工智能领域,具身智能(EmbodiedIntelligence)是指通过模拟人类的生理、心理和行为特性,构建能够与客观世界直接交互的智能系统。与传统基于符号逻辑的智能不同,具身智能系统强调感知、运动和环境交互,旨在实现更加全面、直观的智能理解与决策。近年来,随着传感器技术、机器视觉、机器人技术的发展,具身智能领域取得了显著进展。具身智能系统不仅在工业自动化、服务机器人、虚拟现实等应
- LabVIEW 中不同 VI 间图像传递方法解析
LabVIEW开发
LabVIEW知识LabVIEW知识
在LabVIEW开发过程中,经常会遇到需要在不同VI之间传递图像数据的情况。比如在一些机器视觉检测系统中,子VI负责图像采集,主程序需要实时显示采集到的图像。同时,在实践中我们发现,采用共享变量或队列等常规数据传递方式来传递图像时,会出现图像闪烁问题,而在单个VI内显示图像却不会有此现象。那么,如何高效且稳定地在不同VI间传递图像呢?常规数据传递方式的局限性共享变量共享变量在LabVIEW中常用于
- 基于亚博K210开发板——物体检测测试
追兮兮
K210K210
开发板亚博K210开发板实验目的本次测试主要学习K210如何物体检测,然后通过LCD显示屏实时框出检测物体然后以不同颜色标记名称。实验元件OV2640摄像头/OV9655摄像头/GC2145摄像头、LCD显示屏硬件连接K210开发板出厂默认已经安装好摄像头和显示器,只需要使用Type-C数据线连接K210开发板与电脑即可。实验原理KendryteK210具备机器视觉能力,是零门槛机器视觉嵌入式解决
- 霍夫圆检测原理及使用案例(带调参过程)
乐平要加油啊
OpenCV计算机视觉opencv人工智能
在工业检测和机器视觉等领域,传统图像处理技术依然是不可或缺的重要方法。特别是圆形目标的检测和定位,传统图像处理技术的能够提供高效且精确的解决方案。本文将详细探讨如何使Python编程语言和OpenCV库,结合霍夫圆算法实现圆形目标的检测。此外,本文提供了调参的具体过程。觉得可以的话,点赞收藏哈。本人励志成为一名大博主,你的支持就是我最大的动力!!目录1霍夫圆检测原理1.1检测原理1.2函数参数解释
- 从机器视觉角度进行公路路面病害检测
51camera
公路路面缺陷检测路面病害检测工业相机
从机器视觉检测角度讨论公路路面病害检测,核心在于通过图像采集、处理与分析技术实现病害的自动化识别与量化。图像采集传感器选择:常用高分辨率工业相机、多光谱相机或
- FPGA高速接口 mipi lvds cameralink hdml 千兆网 sdi
海涛高软
fpga开发
mipi:https://blog.csdn.net/SDJ_success/article/details/146541776cameralinkCameraLink协议CameraLink协议是一种专门针对机器视觉应用领域的串行通信协议,它使用低压差分信号(LVDS)进行数据的传输和通信。CameraLink标准是在ChannelLink标准的基础上多加了6对差分信号线,其中4对用于并行传输相
- python opencv 三维重建_【python+opencv实现基于图片序列的三维重建】 - #1
weixin_39778815
pythonopencv三维重建
2015年09月05-三维重建一直是机器视觉研究的热门方向,比如,基于双目视觉,单目视觉,多视几何,光场三维重建等等。每一种方法都有其有点和局限性。单目视觉需要拍摄多幅图像,并且在拍摄过程中需要不断的调整相机的聚焦位置,最后采取一定的融合方法来找到每幅图像中的清晰像素点,从而得到深度信息。这种方法也被称为焦点堆栈法。在实际测试多个场景后,发现二级梯度评价函数和拉普拉斯评价函数融合效果较好。程201
- 深入解析 Cognex VisionPro 的 CogDistanceSegmentSegmentTool
东城十三
计算机视觉
深入解析CognexVisionPro的CogDistanceSegmentSegmentTool在机器视觉和图像处理领域,测量两条线段之间的距离是识别和分析图像中目标物体的重要方法之一。CognexVisionPro提供了强大的工具集,其中CogDistanceSegmentSegmentTool专门用于检测和测量两条线段之间的距离。本文将深入解析CogDistanceSegmentSegmen
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那