参考的博客:https://blog.csdn.net/PKU_Jade/article/details/73498753
在facenet .py
的line 75-77 有引用该函数。
with tf.control_dependencies([centers]): # 操作依赖,loss内的操作,将会再centers后再进行。
loss = tf.reduce_mean(tf.square(features - centers_batch)) #
return loss, centers
具体的用法如下。
with g.control_dependencies([a, b, c]):
# `d` and `e` will only run after `a`, `b`, and `c` have executed.
d = ...
e = ...
可以嵌套control_dependencies
使用
with g.control_dependencies([a, b]):
# Ops constructed here run after `a` and `b`.
with g.control_dependencies([c, d]):
# Ops constructed here run after `a`, `b`, `c`, and `d`
.
可以传入None 来消除依赖:
with g.control_dependencies([a, b]):
# Ops constructed here run after `a` and `b`.
with g.control_dependencies(None):
# Ops constructed here run normally, not waiting for either `a` or `b`.
with g.control_dependencies([c, d]):
# Ops constructed here run after `c` and `d`, also not waiting
# for either `a` or `b`.
注意:
控制依赖只对那些在上下文环境中建立的操作有效,仅仅在context中使用一个操作或张量是没用的
# WRONG
def my_func(pred, tensor):
t = tf.matmul(tensor, tensor)
with tf.control_dependencies([pred]):
# The matmul op is created outside the context, so no control
# dependency will be added.
return t
# RIGHT
def my_func(pred, tensor):
with tf.control_dependencies([pred]):
# The matmul op is created in the context, so a control dependency
# will be added.
return tf.matmul(tensor, tensor)
例子:
在训练模型时我们每步训练可能要执行两种操作,op a, b 这时我们就可以使用如下代码:
with tf.control_dependencies([a, b]):
c= tf.no_op(name='train')#tf.no_op;什么也不做
sess.run(c)
在这样简单的要求下,可以将上面代码替换为:
c= tf.group([a, b])
sess.run(c)