这里总结网上自己找到的资料,搞一个简单的框架供大家参考一下。
OpenCV官方的SVM代码在http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
在http://blog.csdn.net/sangni007/article/details/7471222看到一段还不错的代码,结构清楚,虽然注释比较少,但很有参考价值,于是我添加了一些注释,看着更舒服。废话少说,直接上代码:
[cpp] view plaincopyprint
#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
vector img_path;//输入文件名变量
vector img_catg;
int nLine = 0;
string buf;
ifstream svm_data( "E:/SVM_DATA.txt" );//首先,这里搞一个文件列表,把训练样本图片的路径都写在这个txt文件中,使用bat批处理文件可以得到这个txt文件
unsigned long n;
while( svm_data )//将训练样本文件依次读取进来
{
if( getline( svm_data, buf ) )
{
nLine ++;
if( nLine % 2 == 0 )//这里的分类比较有意思,看得出来上面的SVM_DATA.txt文本中应该是一行是文件路径,接着下一行就是该图片的类别,可以设置为0或者1,当然多个也无所谓
{
img_catg.push_back( atoi( buf.c_str() ) );//atoi将字符串转换成整型,标志(0,1),注意这里至少要有两个类别,否则会出错
}
else
{
img_path.push_back( buf );//图像路径
}
}
}
svm_data.close();//关闭文件
CvMat *data_mat, *res_mat;
int nImgNum = nLine / 2; //读入样本数量 ,因为是每隔一行才是图片路径,所以要除以2
////样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
data_mat = cvCreateMat( nImgNum, 1764, CV_32FC1 ); //这里第二个参数,即矩阵的列是由下面的descriptors的大小决定的,可以由descriptors.size()得到,且对于不同大小的输入训练图片,这个值是不同的
cvSetZero( data_mat );
//类型矩阵,存储每个样本的类型标志
res_mat = cvCreateMat( nImgNum, 1, CV_32FC1 );
cvSetZero( res_mat );
IplImage* src;
IplImage* trainImg=cvCreateImage(cvSize(64,64),8,3);//需要分析的图片,这里默认设定图片是64*64大小,所以上面定义了1764,如果要更改图片大小,可以先用debug查看一下descriptors是多少,然后设定好再运行
//开始搞HOG特征
for( string::size_type i = 0; i != img_path.size(); i++ )
{
src=cvLoadImage(img_path[i].c_str(),1);
if( src == NULL )
{
cout<<" can not load the image: "<descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
cout<<"HOG dims: "<::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(data_mat,i,n,*iter);//把HOG存储下来
n++;
}
//cout<rows< img_tst_path;
ifstream img_tst( "E:/SVM_TEST.txt" );//同输入训练样本,这里也是一样的,只不过不需要标注图片属于哪一类了
while( img_tst )
{
if( getline( img_tst, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tst.close();
CvMat *test_hog = cvCreateMat( 1, 1764, CV_32FC1 );//注意这里的1764,同上面一样
char line[512];
ofstream predict_txt( "SVM_PREDICT.txt" );//把预测结果存储在这个文本中
for( string::size_type j = 0; j != img_tst_path.size(); j++ )//依次遍历所有的待检测图片
{
test = cvLoadImage( img_tst_path[j].c_str(), 1);
if( test == NULL )
{
cout<<" can not load the image: "<descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
cout<<"HOG dims: "<::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(SVMtrainMat,0,n,*iter);
n++;
}
int ret = svm.predict(SVMtrainMat);//获取最终检测结果,这个predict的用法见 OpenCV的文档
std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
predict_txt<
另外,自己需要把这个程序嵌入到另外一个工程中去,因为那里数据类型是Mat,不是cvMat,所以我又修改了上面的程序,并且图片大小也不是固定的64*64,需要自己设置一下图片大小,因为太懒,直接把改好的程序放过来:
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
int ImgWidht = 120;
int ImgHeight = 120;
vector img_path;
vector img_catg;
int nLine = 0;
string buf;
ifstream svm_data( "E:/apple/SVM_DATA.txt" );
unsigned long n;
while( svm_data )
{
if( getline( svm_data, buf ) )
{
nLine ++;
if( nLine < 5 )
{
img_catg.push_back(1);
img_path.push_back( buf );//图像路径
}
else
{
img_catg.push_back(0);
img_path.push_back( buf );//图像路径
}
}
}
svm_data.close();//关闭文件
Mat data_mat, res_mat;
int nImgNum = nLine; //读入样本数量
////样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
//data_mat = Mat::zeros( nImgNum, 12996, CV_32FC1 );
//类型矩阵,存储每个样本的类型标志
res_mat = Mat::zeros( nImgNum, 1, CV_32FC1 );
Mat src;
Mat trainImg = Mat::zeros(ImgHeight, ImgWidht, CV_8UC3);//需要分析的图片
for( string::size_type i = 0; i != img_path.size(); i++ )
{
src = imread(img_path[i].c_str(), 1);
cout<<" processing "<descriptors;//结果数组
hog->compute(trainImg, descriptors, Size(1,1), Size(0,0)); //调用计算函数开始计算
if (i==0)
{
data_mat = Mat::zeros( nImgNum, descriptors.size(), CV_32FC1 ); //根据输入图片大小进行分配空间
}
cout<<"HOG dims: "<::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
data_mat.at(i,n) = *iter;
n++;
}
//cout<rows<(i, 0) = img_catg[i];
cout<<" end processing "< img_tst_path;
ifstream img_tst( "E:/apple/SVM_TEST.txt" );
while( img_tst )
{
if( getline( img_tst, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tst.close();
Mat test;
char line[512];
ofstream predict_txt( "E:/apple/SVM_PREDICT.txt" );
for( string::size_type j = 0; j != img_tst_path.size(); j++ )
{
test = imread( img_tst_path[j].c_str(), 1);//读入图像
resize(test, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);//要搞成同样的大小才可以检测到
HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
vectordescriptors;//结果数组
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
cout<<"The Detection Result:"<::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
SVMtrainMat.at(0,n) = *iter;
n++;
}
int ret = svm.predict(SVMtrainMat);
std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
printf("%s %d\r\n", img_tst_path[j].c_str(), ret);
getchar();
predict_txt<
就到这里吧,再整理一下思路。
如果运行的时候出现Link错误,有可能是没有附加依赖项,要添加opencv_objdetect230d.lib,我的OpenCV是2.3版本,所以这里是230.
============================================================================
以下是评论
10楼 thefutureisour 2012-11-21 17:04发表 [回复] [引用] [举报] 挑一个小毛病:for( string::size_type i = 0; i != img_path.size(); i++ )
string的size_type是用来确定是字符串的第几个字符的。
应该改为:
for( vector
vector