Storm 入门与安装

一、Storm 简介

具体不说了,反正Storm是个实时的、分布式以及具备高容错的计算系统,Hadoop 流计算版本。我们拿他来做大数据实时计算的。

官网简介地址:

http://storm.apache.org/documentation/Tutorial.html

而下面这篇文章是我第一次认识Storm,感谢作者

http://blog.csdn.net/mousever/article/details/7423227

二、基本概念

刚才说这边说StormHadoop流计算版本。首先我们通过一个 stormhadoop的对比来了解storm

的基本概念。

 

Hadoop

Storm

系统角色

JobTracker

Nimbus

TaskTracker

Supervisor

Child

Worker

应用名称

Job

Topology

组件接口

Mapper/Reducer

Spout/Bolt

 

接下来我们再来具体看一下这些概念。

1.   Nimbus:负责资源分配和任务调度。

2.   Supervisor:负责接受nimbus分配的任务,启动和停止属于自己管理的worker进程。

3.   Worker:运行具体处理组件逻辑的进程。

4.   Taskworker中每一个spout/bolt的线程称为一个task.storm0.8之后,task不再与物理线程对应,同一个spout/bolttask可能会共享一个物理线程,该线程称为executor

下面这个图描述了以上几个角色之间的关系。

Storm 入门与安装_第1张图片

Topology:storm中运行的一个实时应用程序,因为各个组件间的消息流动形成逻辑上的一个拓扑结构。

  Spout:在一个topology中产生源数据流的组件。通常情况下spout会从外部数据源中读取数据,然后转换为topology内部的源数据。Spout是一个主动的角色,其接口中有个nextTuple()函数,storm框架会不停地调用此函数,用户只要在其中生成源数据即可。

  Bolt:在一个topology中接受数据然后执行处理的组件。Bolt可以执行过滤、函数操作、合并、写数据库等任何操作。Bolt是一个被动的角色,其接口中有个execute(Tuple input)函数,在接受到消息后会调用此函数,用户可以在其中执行自己想要的操作。

  Tuple:一次消息传递的基本单元。本来应该是一个key-value的map,但是由于各个组件间传递的tuple的字段名称已经事先定义好,所以tuple中只要按序填入各个value就行了,所以就是一个value list.

  Stream:源源不断传递的tuple就组成了stream

三、Storm安装

3.1安装ZeroMQ(storm 0.9 之后就不依赖这了,因此这里可以忽略)

因为Storm为了保证消息能得到快速的处理,使用ZeroMQ作为其底层消息队列

这里安装十分头疼。因为虚拟机或者服务器总是缺少各种依赖

这里安装zeromq-2.2.0.tar.gz,安装步骤如下:

wget http://download.zeromq.org/zeromq-2.2.0.tar.gz
tar zxfzeromq-2.2.0.tar.gz
cd zeromq-2.2.0
./configure
make
make install

如果在安装过程中,缺少什么,请yum什么。

安装ZeroMQ所需组件及工具:

yum install gcc
yum install gcc-c++
yum install make
yum install uuid-devel
yum install libuuid-devel

如果yum都失效了,即yum的时候报这个错(This system is not registeredwith RHN),请看下面的网址:

http://jingyan.baidu.com/album/6d704a13f0d61128db51ca82.html

 本地模式。Storm有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元

测试。

 

3.2安装JZMQ(storm 0.9 之后就不依赖这了,因此这里可以忽略)

#yum install git
git clone https://github.com/zeromq/jzmq.git
cd jzmq
./autogen.sh
./configure
Make
make install

如果缺少libtool,则先安装 yum install libtoo

 

3.3 安装Python2.7.2

大多linux服务器默认有装Python,不过版本不一定和Storm 相匹配,所以我们可以先不装,等全部装完后,如果启动Storm 发生问题,再装Python

wget http://www.python.org/ftp/python/2.7.2/Python-2.7.2.tgz
tar zxvfPython-2.7.2.tgz
cd Python-2.7.2
./configure
make
make install

3.4安装storm

wget http://mirrors.cnnic.cn/apache/storm/apache-storm-0.9.2-incubating/apache-storm-0.9.2-incubating.tar.gz
tar –xzvf apache-storm-0.9.2-incubating.tar.gz

然后vim /etc/profile  设置下

export STORM_HOME=/usr/local/apache-storm-0.9.2-incubating
export PATH=$PATH:$STORM_HOME/bin

四、Storm配置

配置storm

修改storm/conf/storm.yaml文件

storm.zookeeper.servers:
     - “carl"
     - “slave1"
     - “slave2"
nimbus.host: “carl "
storm.local.dir: "/usr/tmp/storm"
supervisor.slots.ports:
     - 6700
     - 6701
     - 6702
     - 6703


说明一下:

1、storm.local.dir表示storm需要用到的本地目录。

2、nimbus.host表示那一台机器是master机器,即 nimbus。

3、storm.zookeeper.servers表示哪几台机器是zookeeper服务器,所以要先安装Zookeeper。

4、storm.zookeeper.port表示zookeeper的端口号,这里一定要与zookeeper配置的端口号一致,否则会出现通信错误,切记切记。当然你也可以配 superevisor.slot.ports,supervisor.slots.ports表示supervisor节点的槽数,就是最多能跑几个 worker进程(每个sprout

或bolt默认只启动一个worker,但是可以通过conf修改成多个)

安装Zookeeper 请看这里

http://blog.csdn.net/looklook5/article/details/40826241

五、启动storm

1、启动zookeeper环境,记得关闭防火墙。

2、在nimbus主机执行命令

storm nimbus
 启动nimbus

3、在supervisor主机执行命令

storm supervisor 
启动从节点

4、在nimbus主机执行

storm ui
启动ui(ui和nimbus需要在同一台机子上面)

启动完毕,通过 http://服务器IP:8080/访问UI

安装完毕

六、测试storm

将整个storm 项目下载下来

https://github.com/apache/storm

 

然后我们用官网的测试例子

https://github.com/apache/storm/tree/master/examples/storm-starter

 

将程序打包,这边的测试脚本是storm.starterWordCountTopology

上传服务器

 

执行命令:

./storm jar jar包名 storm.starter.WordCountTopologytest

查看UI  http:// 服务器IP:8080

可以看到任务的运行。

下面如果输入参数则是本地模式。

./storm jar jar包名 storm.starter.WordCountTopology

大家可以看到数据的输出,而程序则在10秒后自动结束(测试程序自己设置的)

 

如果执行过程中,报错找不到splitsentence.py,请把在原脚本中的这个程序放到$STORM_HOME/lib 中

 

七、storm的详细配置

配置项

配置说明

storm.zookeeper.servers

ZooKeeper服务器列表

storm.zookeeper.port

ZooKeeper连接端口

storm.local.dir

storm使用的本地文件系统目录(必须存在并且storm进程可读写)

storm.cluster.mode

Storm集群运行模式([distributed|local])

storm.local.mode.zmq

Local模式下是否使用ZeroMQ作消息系统,如果设置为false则使用java消息系统。默认为false

storm.zookeeper.root

ZooKeeperStorm的根目录位置

storm.zookeeper.session.timeout

客户端连接ZooKeeper超时时间

storm.id

运行中拓扑的id,stormname和一个唯一随机数组成。

nimbus.host

nimbus服务器地址

nimbus.thrift.port

nimbusthrift监听端口

nimbus.childopts

通过storm-deploy项目部署时指定给nimbus进程的jvm选项

nimbus.task.timeout.secs

心跳超时时间,超时后nimbus会认为task死掉并重分配给另一个地址。

nimbus.monitor.freq.secs

nimbus检查心跳和重分配任务的时间间隔.注意如果是机器宕掉nimbus会立即接管并处理。

nimbus.supervisor.timeout.secs

supervisor的心跳超时时间,一旦超过nimbus会认为该supervisor已死并停止为它分发新任务.

nimbus.task.launch.secs

task启动时的一个特殊超时设置.在启动后第一次心跳前会使用该值来临时替代nimbus.task.timeout.secs.

nimbus.reassign

当发现task失败时nimbus是否重新分配执行。默认为真,不建议修改。

nimbus.file.copy.expiration.secs

nimbus判断上传/下载链接的超时时间,当空闲时间超过该设定时nimbus会认为链接死掉并主动断开

ui.port

Storm UI的服务端口

drpc.servers

DRPC服务器列表,以便DRPCSpout知道和谁通讯

drpc.port

Storm DRPC的服务端口

supervisor.slots.ports

supervisor上能够运行workers的端口列表.每个worker占用一个端口,且每个端口只运行一个worker.通过这项配置可以调整每台机器上运行的worker数.(调整slot数/每机)

supervisor.childopts

storm-deploy项目中使用,用来配置supervisor守护进程的jvm选项

supervisor.worker.timeout.secs

supervisor中的worker心跳超时时间,一旦超时supervisor会尝试重启worker进程.

supervisor.worker.start.timeout.secs

supervisor初始启动时,worker的心跳超时时间,当超过该时间supervisor会尝试重启worker。因为JVM初始启动和配置会带来的额外消耗,从而使得第一次心跳会超过supervisor.worker.timeout.secs的设定

supervisor.enable

supervisor是否应当运行分配给他的workers.默认为true,该选项用来进行Storm的单元测试,一般不应修改.

supervisor.heartbeat.frequency.secs

supervisor心跳发送频率(多久发送一次)

supervisor.monitor.frequency.secs

supervisor检查worker心跳的频率

worker.childopts

supervisor启动worker时使用的jvm选项.所有的”%ID%”字串会被替换为对应worker的标识符

worker.heartbeat.frequency.secs

worker的心跳发送时间间隔

task.heartbeat.frequency.secs

task汇报状态心跳时间间隔

task.refresh.poll.secs

task与其他tasks之间链接同步的频率.(如果task被重分配,其他tasks向它发送消息需要刷新连接).一般来讲,重分配发生时其他tasks会理解得到通知。该配置仅仅为了防止未通知的情况。

topology.debug

如果设置成trueStorm将记录发射的每条信息。

topology.optimize

master是否在合适时机通过在单个线程内运行多个task以达到优化topologies的目的.

topology.workers

执行该topology集群中应当启动的进程数量.每个进程内部将以线程方式执行一定数目的tasks.topology的组件结合该参数和并行度提示来优化性能

topology.ackers

topology中启动的acker任务数.Acker保存由spout发送的tuples的记录,并探测tuple何时被完全处理.Acker探测到tuple被处理完毕时会向spout发送确认信息.通常应当根据topology的吞吐量来确定acker的数目,但一般不需要太多.当设置为0,相当于禁用了消息可靠性,storm会在spout发送tuples后立即进行确认.

topology.message.timeout.secs

topologyspout发送消息的最大处理超时时间.如果一条消息在该时间窗口内未被成功ack,Storm会告知spout这条消息失败。而部分spout实现了失败消息重播功能。

topology.kryo.register

注册到Kryo(Storm底层的序列化框架)的序列化方案列表.序列化方案可以是一个类名,或者是com.esotericsoftware.kryo.Serializer的实现.

topology.skip.missing.kryo.registrations

Storm是否应该跳过它不能识别的kryo序列化方案.如果设置为否task可能会装载失败或者在运行时抛出错误.

topology.max.task.parallelism

在一个topology中能够允许的最大组件并行度.该项配置主要用在本地模式中测试线程数限制.

topology.max.spout.pending

一个spout task中处于pending状态的最大的tuples数量.该配置应用于单个task,而不是整个spoutstopology.

topology.state.synchronization.timeout.secs

组件同步状态源的最大超时时间(保留选项,暂未使用)

topology.stats.sample.rate

用来产生task统计信息的tuples抽样百分比

topology.fall.back.on.java.serialization

topology中是否使用java的序列化方案

zmq.threads

每个worker进程内zeromq通讯用到的线程数

zmq.linger.millis

当连接关闭时,链接尝试重新发送消息到目标主机的持续时长.这是一个不常用的高级选项,基本上可以忽略.

java.library.path

JVM启动(Nimbus,Supervisorworkers)时的java.library.path设置.该选项告诉JVM在哪些路径下定位本地库.

 


你可能感兴趣的:(Storm)