复习-优化算法

复习-优化算法_第1张图片

复习-优化算法_第2张图片  复习-优化算法_第3张图片

 

在线学习算法:FTRL

复习-优化算法_第4张图片

下面程序来自https://www.kaggle.com/jiweiliu/ftrl-starter-code/code

alpha = .005  # learning rate
beta = 1.   # smoothing parameter for adaptive learning rate
L1 = 0.2     # L1 regularization, larger value means more regularized
L2 = 1.     # L2 regularization, larger value means more regularized

# C, feature/hash trick
D = 2 ** 24             # number of weights to use
interaction = False     # whether to enable poly2 feature interactions


class ftrl_proximal(object):
    ''' Our main algorithm: Follow the regularized leader - proximal

        In short,
        this is an adaptive-learning-rate sparse logistic-regression with
        efficient L1-L2-regularization

        Reference:
        http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
    '''

    def __init__(self, alpha, beta, L1, L2, D, interaction):
        # parameters
        self.alpha = alpha
        self.beta = beta
        self.L1 = L1
        self.L2 = L2

        # feature related parameters
        self.D = D
        self.interaction = interaction

        # model
        # n: squared sum of past gradients
        # z: weights
        # w: lazy weights
        self.n = [0.] * D
        self.z = [random() for k in range(D)]#[0.] * D
        self.w = {}

    def _indices(self, x):
        ''' A helper generator that yields the indices in x

            The purpose of this generator is to make the following
            code a bit cleaner when doing feature interaction.
        '''

        # first yield index of the bias term
        yield 0

        # then yield the normal indices
        for index in x:
            yield index

        # now yield interactions (if applicable)
        if self.interaction:
            D = self.D
            L = len(x)

            x = sorted(x)
            for i in xrange(L):
                for j in xrange(i+1, L):
                    # one-hot encode interactions with hash trick
                    yield abs(hash(str(x[i]) + '_' + str(x[j]))) % D

    def predict(self, x):
        ''' Get probability estimation on x

            INPUT:
                x: features

            OUTPUT:
                probability of p(y = 1 | x; w)
        '''

        # parameters
        alpha = self.alpha
        beta = self.beta
        L1 = self.L1
        L2 = self.L2

        # model
        n = self.n
        z = self.z
        w = {}

        # wTx is the inner product of w and x
        wTx = 0.
        for i in self._indices(x):
            sign = -1. if z[i] < 0 else 1.  # get sign of z[i]

            # build w on the fly using z and n, hence the name - lazy weights
            # we are doing this at prediction instead of update time is because
            # this allows us for not storing the complete w
            if sign * z[i] <= L1:
                # w[i] vanishes due to L1 regularization
                w[i] = 0.
            else:
                # apply prediction time L1, L2 regularization to z and get w
                w[i] = (sign * L1 - z[i]) / ((beta + sqrt(n[i])) / alpha + L2)

            wTx += w[i]

        # cache the current w for update stage
        self.w = w

        # bounded sigmoid function, this is the probability estimation
        return 1. / (1. + exp(-max(min(wTx, 35.), -35.)))

    def update(self, x, p, y):
        ''' Update model using x, p, y

            INPUT:
                x: feature, a list of indices
                p: click probability prediction of our model
                y: answer

            MODIFIES:
                self.n: increase by squared gradient
                self.z: weights
        '''

        # parameter
        alpha = self.alpha

        # model
        n = self.n
        z = self.z
        w = self.w

        # gradient under logloss
        g = p - y

        # update z and n
        for i in self._indices(x):
            sigma = (sqrt(n[i] + g * g) - sqrt(n[i])) / alpha
            z[i] += g - sigma * w[i]
            n[i] += g * g

 

参考:

1.《动手学深度学习》

2.http://ruder.io/optimizing-gradient-descent/

3.Ad Click Prediction: a View from the Trenches

你可能感兴趣的:(数据挖掘,深度学习)