场景:
多分类
出错代码:
/** 词向量映射*/ val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(500). transform(DF_classAndDoc) /** 计算逆向文本频率 */ val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features") val rescaled = idf.fit(hashingTF).//对每个单词计算逆文本频率 transform(hashingTF)//转换词频向量为TF-IDF向量 /** 转化DF为训练模型RDDArray[Double]*/ val labelAndFeaturesRDD = rescaled.select($"label", $"features").rdd.map{ case Row(label: String, features: Vector) => LabeledPoint(label.toDouble, features) // features.toDense } labelAndFeaturesRDD
说明:
LabeledPoint() 是 mllib 中的方法,如上使用的是spark-2.1.0的 ML 包,IDF计算所得为:org.apache.spark.ml.linalg.Vector类型 。 所以会报类型不匹配错误。
spark2 与 spark1 不兼容, 测试spark-1.6.3 如上代码可行,无错,
解决:
import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.linalg.{Vector => mlV} import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} import org.apache.spark.sql.Row // Prepare training data from a list of (id, text, label) tuples. val training = spark.createDataFrame(Seq( (0L, "a b c d e spark", 1.0), (1L, "b d", 0.0), (2L, "spark f g h", 1.0), (3L, "hadoop mapreduce", 0.0), (4L, "b spark who", 1.0), (5L, "g d a y", 0.0), (6L, "spark fly", 1.0), (7L, "was mapreduce", 0.0), (8L, "e spark program", 1.0), (9L, "a e c l", 0.0), (10L, "spark compile", 1.0), (11L, "hadoop software", 0.0) )).toDF("id", "text", "label") // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words") val hashingTF = new HashingTF().setInputCol(tokenizer.getOutputCol).setOutputCol("features") val lr = new LogisticRegression().setFamily("multinomial")//.LogisticRegressionWithLBFGS().setNumClasses(5)//.setMaxIter(10) val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr)) val paramGrid = new ParamGridBuilder().addGrid(hashingTF.numFeatures, Array(10, 100, 1000)).addGrid(lr.regParam, Array(0.1, 0.01)).build() val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(new MulticlassClassificationEvaluator).setEstimatorParamMaps(paramGrid).setNumFolds(2) // Use 3+ in practice val cvModel = cv.fit(training) val test = spark.createDataFrame(Seq( (4L, "spark i j k"), (5L, "l m n"), (6L, "mapreduce spark"), (3L, "hadoop mapreduce"), (7L, "apache hadoop") )).toDF("id", "text").select("text") cvModel.transform(test).select("id", "text", "probability", "prediction"). collect().foreach { case Row(id: Long, text: String, prob: mlV, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") }