- 字节跳动后端或大数据基础知识面试题及参考答案(2万字长文)
大模型大数据攻城狮
大数据大厂面试数据结构算法leetcode
目录Redis的数据类型Redis数据类型的底层数据结构三次握手、四次挥手Redis持久化机制购物车为什么用Redis存,是永久存储吗MySQL的InnoDB索引数据结构哪些SQL的关键字会让索引失效队列、栈、数组、链表有什么不同讲讲爬虫的构成爬虫抓到的数据不清洗吗?不去重吗?对爬虫的更多了解Linux进程间通信机制进程和线程的区别线程私有的数据讲一下堆排序,每次调整的时间复杂度?堆排序是稳定的吗
- 《2025:中国行业新方向与民营企业的使命》
晚风る
传媒
2025年,中国经济正站在新的历史节点上,科技创新、数字经济、绿色经济等成为发展的核心驱动力。在这样的背景下,2025年民营企业座谈会的召开,无疑为中国未来行业的发展指明了方向。本文将结合座谈会内容,探讨中国未来行业发展的新方向。一、数字经济:创新驱动的核心引擎数字经济已成为全球经济增长的重要引擎,而民营企业在其中扮演着关键角色。2025年,数字经济将继续深化,涵盖云计算、大数据、人工智能、物联网
- 网络安全:挑战、技术与未来发展
一ge科研小菜鸡
运维网络运维
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在数字化时代,网络安全(Cybersecurity)已成为全球关注的焦点。随着云计算、大数据、人工智能(AI)、物联网(IoT)等技术的发展,企业和个人的敏感数据在互联网上的流通日益增加,黑客攻击、数据泄露、勒索软件等网络安全威胁也日趋严峻。本文将从网络安全的核心概念、常见攻击手段、防御技术、企业安全策略以及未来发展趋势等方面,深入探讨如
- DolphinScheduler环境搭建、服务启动等常见问题及解决方案
数据库
ApacheDolphinScheduler作为一款分布式易扩展的工作流调度系统,广泛应用于大数据任务编排。然而,在实际使用中,用户可能会遇到环境搭建、服务启动、工作流执行等问题。本文结合社区文档与用户实践经验,整理以下高频问题及详细解决方案,帮助用户快速定位并解决问题。一、安装与部署问题环境依赖配置错误问题:部署时因缺少JDK、Maven或数据库配置导致失败。解决方案:安装JDK1.8+并配置J
- 文心快码智能体不断发展,真正与AI协同工作
文心快码(BaiduComate)是基于百度文心大模型,在研发全流程全场景下为开发者提供辅助建议的智能代码助手。结合百度积累多年的编程现场大数据、外部优秀开源数据,可为开发者生成更符合实际研发场景的优秀代码,提升编码效率,释放“十倍”软件生产力。如果您对【文心快码企业版】感兴趣,希望获取更多详细信息,点击进入企业服务咨询我们会尽快安排专业人员与您取得联系!我们期待与您建立联系,为您的企业带来更高效
- 智能城市:科技驱动的未来城市
给生活加糖!
热门知识科技语音识别人工智能
随着科技的不断发展和城市化进程的加速,传统城市面临着诸多挑战,包括交通拥堵、环境污染、资源浪费和公共服务不足等问题。为了解决这些问题,智能城市(SmartCity)的概念应运而生。智能城市是利用现代信息技术、物联网、大数据、云计算、人工智能等手段,对城市的各个方面进行全面的智能化管理与优化,从而提高城市运行效率、改善居民生活质量,并实现可持续发展的城市目标。一、什么是智能城市?智能城市是指通过信息
- 推动AI云产业向深向实,云·AI·算力创新发展大会即将启幕
科技云报道
云计算AI云计算
近年来,以AIGC为代表的新兴技术正加速演进,全球站在智能化变革的起点,人工智能与云计算的深度融合,也驱动云计算进入第三次发展浪潮,迎来前所未有的机遇。伴随AI的快速发展,2024年《政府工作报告》明确提出,制定支持数字经济高质量发展政策,深化大数据、人工智能等研发应用,开展“人工智能+”行动。这意味着AI正在成为产业创新的核心抓手和驱动新质生产力的关键引擎,而云计算作为基础底座将在其中扮演至关重
- PHP + XlsWriter实现百万级数据导入导出,如何实现
程序员阿凡提
PHP实战教程php开发语言
在PHP中使用XlsWriter(如xlswriter扩展)处理百万级数据的导入导出,需重点解决内存占用和性能问题。以下是分步骤的实现方案:一、环境准备1安装xlswriter扩展从PECL安装:peclinstallxlswriter在php.ini中启用扩展:extension=xlswriter.so2调整PHP配置处理大数据时需增加内存和执行时间限制:memory_limit=1024Mm
- 【国产自研-神软大数据平台3.4.10】
王旭亮_
数据治理大数据技术栈大数据数据治理神软产品国产自研
产品介绍:北京神舟航天软件技术股份有限公司自研全栈式大数据平台神软大数据平台是数据全生命周期一站式数据治理开发平台,提供数据采集、数据集成、数据开发、数据治理、数据服务等功能,支持大数据存储、大数据计算分析引擎等数据底座,充分发挥数据价值作用,聚焦企业数字化转型,提升组织的信息化水平和高效应用决策。1、可以兼容并适配各种服务器(X86\ARM)、操作系统包括Centos、麒麟V10SP3、欧拉(o
- 从0开始使用Docker搭建Spark集群
吃鱼的羊
SPARKHadoop
https://www.jianshu.com/p/ee210190224f?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation最近在学习大数据技术,朋友叫我直接学习Spark,英雄不问出处,菜鸟不问对错,于是我就开始了Spark学习。为什么要在Docker上搭建Spark集群
- Fink与Hadoop的简介以及联系
Bugkillers
hadoop大数据分布式
Fink和Hadoop是两个常用于大数据处理的开源工具,它们可以搭配使用以构建高效的数据处理系统。一、Fink和Hadoop的关系Fink:1、Fink是一个分布式流处理框架,专注于实时数据处理。它支持高吞吐、低延迟的流处理,适用于实时分析、事件驱动应用等场景。2、Fink提供精确一次(exactly-once)语义,确保数据处理的准确性。Hadoop:1、Hadoop是一个分布式存储和批处理框架
- Windows环境下构建本地多节点Elasticsearch集群
静谧星光c
windowselasticsearchjenkins大数据
Windows环境下构建本地多节点Elasticsearch集群在大数据领域,Elasticsearch是一个经常使用的分布式搜索和分析引擎。本文将介绍如何在Windows操作系统下搭建一个本地的多节点Elasticsearch集群。通过搭建本地集群,我们可以在单一系统上模拟出多个节点,从而加深对Elasticsearch集群内工作原理的理解。准备工作首先,确保你的系统已经安装了Java开发环境(
- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- 如何在Java中设计大规模稀疏数据处理架构
省赚客app开发者
java架构开发语言
如何在Java中设计大规模稀疏数据处理架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在大数据时代,稀疏数据在各个领域变得越来越常见,例如推荐系统、自然语言处理、图像处理等。稀疏数据通常包含大量零值或空值,直接使用传统的数据处理架构可能导致效率低下,内存和计算资源浪费。因此,设计一个高效的稀疏数据处理架构成为Java开发者面临的关键挑战。本文将探讨如何在Java中
- 程序员如何将技术咨询服务转化为SaaS产品
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
引言与概述在当今快速发展的数字化时代,软件即服务(SaaS)已经成为企业服务市场的重要趋势。随着云计算和大数据技术的普及,越来越多的企业开始将传统的技术咨询服务转化为SaaS产品,以提供更加灵活、可扩展的服务。这不仅为企业带来了新的增长点,也极大地改变了技术服务行业的发展格局。SaaS市场的增长趋势SaaS市场呈现出快速增长的态势,根据市场研究机构的预测,全球SaaS市场的规模将在未来几年内持续扩
- [1138]基于JAVA的安全监管网络人员信息智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java网络开发语言课程设计毕业设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的安全监管网络人员信息智慧管理系统的设计与实现指导老师(一)选题的背景和意义选题背景与意义:随着信息技术的飞速发展和大数据时代的到来,安全监管网络人员信息管理面临着前所未有的挑战与机遇。当前,执法人员、监督员以及各类从业人员的信息档案管理工作日益繁重,传统的人工管理模式效率低下、易出错且难以满足实时更新、精准查询的需求。特别是在复杂的执法环
- 在Hadoop集群中实现数据安全:技术与策略并行
Echo_Wish
实战高阶大数据hadoop大数据分布式
在Hadoop集群中实现数据安全:技术与策略并行随着大数据技术的广泛应用,Hadoop已经成为处理和存储海量数据的首选平台。然而,随着数据规模的扩大,如何确保Hadoop集群中的数据安全也成为了亟待解决的难题。毕竟,数据安全不仅关系到企业的隐私保护,也直接影响到数据的可信度与可用性。本文将探讨如何在Hadoop集群中实现数据安全,分析数据加密、访问控制、审计日志等方面的技术与策略,并通过一些具体的
- 什么是GaussDB
如清风一般
gaussdb
什么是GaussDB简介GaussDB是华为自主创新研发的分布式关系型数据库。该产品具备企业级复杂事务混合负载能力,同时支持分布式事务,同城跨AZ部署,数据0丢失,支持1000+的扩展能力,PB级海量存储。同时拥有云上高可用,高可靠,高安全,弹性伸缩,一键部署,快速备份恢复,监控告警等关键能力,能为企业提供功能全面,稳定可靠,扩展性强,性能优越的企业级数据库服务。应用场景交易型应用大并发、大数据量
- 《传统教培机构的痛点:数字化转型如何破局?》
数字化浪潮下的困境在当今时代,数字化浪潮正以前所未有的速度席卷全球,深刻地改变着人们的生活、工作和学习方式。这是一个数据爆炸的时代,数据成为了驱动社会发展的核心要素之一。据统计,全球每天产生的数据量高达数万亿字节,这些数据涵盖了人们生活的方方面面,从购物习惯到社交行为,从健康状况到学习偏好,都被数字化记录下来。[]()数字化时代的技术创新日新月异,人工智能、大数据、云计算、物联网等新兴技术不断涌现
- Aerospike
小的~~
nosqlAerospike
文章来源:拉勾教育Java高薪训练营第3期Aerospike介绍Aerospike(简称AS)是一个分布式,可扩展的键值存储的NoSQL数据库。T级别大数据高并发的结构化数据存储读写操作达微妙级,99%的响应可在1毫秒内实现采用混合架构,索引存储在内存中,而数据可存储在机械硬盘(HDD)或固态硬盘(SSD)上(也可存储在内存)AS内部在访问SSD屏蔽了文件系统层级,直接访问地址,保证了数据的读取速
- 6个大数据应用案例
雪兽软件
科技前沿大数据
根据市场数据预测报告,到2026年,全球大数据市场可能达到2684亿美元。随着大数据市场的快速增长,组织正在利用大数据来获得洞察力,帮助他们做出更好的决策,改善运营,最终推动最佳增长。从医疗保健到金融,从零售到电信,大数据正被用于改变行业的运作方式,使企业能够创造新的收入来源,增强客户体验,提高运营效率。这个全面的博客将探索令人兴奋的大数据用例领域,探索商业组织如何利用数据获得洞察力,推动创新,并
- Java 大视界 -- Java 大数据在智能体育中的应用与赛事分析(80)
青云交
大数据新视界Java大视界java大数据智能体育数据采集运动员训练赛事分析赛事预测
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据在智能供应链中的应用与优化(76)
青云交
大数据新视界Java大视界大数据智能供应链数据采集整合数据存储管理需求预测物流调度风险管理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 基于 GBase 数据库的海量数据处理与性能优化
big crab
数据库oracle
一、引言随着大数据时代的到来,海量数据的存储和高效处理成为各行业的核心需求。GBase系列数据库(包括GBase8a、GBase8s和GBase8c)以其强大的性能、灵活的存储架构以及高效的查询优化功能,成为处理大规模数据的理想选择。本文将从GBase数据库的特性出发,探讨如何在实际应用中进行海量数据的高效处理,同时提供相关代码示例,帮助开发者更好地理解和应用GBase数据库。二、GBase数据库
- GBase 8a慢SQL优化案例-2 通过分析函数改写不等值关联排序取值
dudulang8088
sql数据库数据仓库
某气象现场一条查询语句,大数据场景下,单个机构查询耗时5分钟以上,需要分析,SQL语句如下:SELECTt.station_no,t.collect_time_stamp,t.r2020,t.topFROM(SELECTt1.station_no,t1.collect_time_stamp,t1.r2020,(SELECTCOUNT(*)+1FROM(SELECTstation_no,--站点编号
- 数据驱动业务增长,E-MapReduce 真实案例解析
Anna_Tong
mapreduce大数据云计算数据分析阿里云实时计算数据驱动
在大数据时代,数据已经成为企业核心竞争力的关键因素之一。无论是电商、金融、物流还是制造业,企业都在探索如何更高效地处理、分析和利用海量数据,以实现精准决策、优化运营并提升业务增长。然而,面对PB级甚至EB级的数据规模,传统的本地大数据计算架构往往难以满足性能和成本的要求。如何在保证计算效率的同时降低运维成本,成为企业数据战略中的关键挑战。阿里云E-MapReduce(EMR)作为一款云原生的大数据
- GBase 数据库的高性能架构与优化实践
big crab
数据库架构
引言随着信息技术的快速发展,数据库作为支撑各行各业数据存储和处理的核心技术之一,承担着越来越重要的角色。在现代企业中,大数据量、复杂查询和高并发处理已成为普遍需求。GBase数据库作为国内领先的数据库产品之一,提供了卓越的性能和灵活的架构设计,能够高效处理复杂的事务、分析查询和海量数据。本文将探讨GBase数据库的高性能架构,并结合实际案例展示其优化实践。一、GBase数据库架构概述GBase数据
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 大数据专业毕业设计选题118例:数据挖掘 数据分析 可视化
HaiLang_IT
毕设选题教程毕业设计大数据数据挖掘
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了大数据专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- 大数据之-hdfs+hive+hbase+kudu+presto集群(6节点)
管哥的运维私房菜
大数据hdfshivekuduprestohbase
几个主要软件的下载地址:prestohttps://prestosql.io/docs/current/index.htmlkudurpm包地址https://github.com/MartinWeindel/kudu-rpm/releaseshivehttp://mirror.bit.edu.cn/apache/hive/hdfshttp://archive.apache.org/dist/ha
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,