前些天利用tensorflow做了一个验证码识别,模型是用的cnn,没有gpu,跑起来真是醉了,深度学习相关的东西果然是土豪公司玩的,难怪深度学习上世纪80年代就有到现在才大火大热,不多说,看看代码,代码主要参考一个大牛的,忘记地址,一路摸爬打滚的,幸好还有大神指点,还是记录下。
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 26 14:09:27 2016
@author: wilson.zhou
"""
import tensorflow as tf
import numpy as np
import glob
import random
from PIL import Image
from skimage import io
import configparser
import os
#config=configparser.ConfigParser()
#config.read(os.getcwd()+"\\conf.cfg")
#PATH=config.get('input','inputDir')
#MODEL_PATH=config.get('model','modelpath')
IMAGE_HEIGHT = 40
IMAGE_WIDTH = 100
MAX_CAPTCHA = 5
CHAR_SET_LEN = 63
PATH = "D:\\tmp\\picture_test\\*.png"
def getPicture(path):
return glob.glob(path)
def getSplitData(path):
result = getPicture(path)
length = len(result)
trainLengh=int(length*0.9)
train = result[0:trainLengh]
test =result[trainLengh:length-1]
#train = result[0:int(length * 0.8)]
#test = [i for i in result if i not in train]
return train, test
def sampleTrain(length,trainData):
return random.sample(trainData,length)
# 把彩色图像转化为灰度图像
def convert2gray(image):
if len(image.shape) > 2:
grap = np.mean(image, -1)
return grap
else:
return image
""" 文本转向量"""
def text2vec(text):
text_len = len(text)
if text_len > MAX_CAPTCHA:
raise ValueError("验证码最长是5个字符")
vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
def char2pos(c):
if c == '_':
k = 62
return k
k = ord(c) - 48
if k > 9:
k = ord(c) - 55
if k > 35:
k = ord(c) - 61
if k > 61:
raise ValueError('No Map')
return k
for i, c in enumerate(text):
idx = i * CHAR_SET_LEN + char2pos(c)
vector[idx] = 1
return vector
""" 向量转文本"""
def vec2text(vec):
if not isinstance(vec, list):
char_pos = vec.nonzero()[0]
else:
char_pos = vec
text = []
for i, c in enumerate(char_pos):
char_idx = c % CHAR_SET_LEN
if char_idx < 10:
char_code = char_idx + ord('0')
elif char_idx < 36:
char_code = char_idx - 10 + ord('A')
elif char_idx < 62:
char_code = char_idx - 36 + ord('a')
elif char_idx == 62:
char_code = ord('_')
text.append(chr(char_code))
return "".join(text)
def getImageAndName(path):
name = path.split("\\")[-1].split(".")[0]
# captcha_image = Image.open(path)
# captcha_image = np.array(captcha_image)
img = 1.0 - io.imread(path, as_grey=True)
return name, img
def get_next_batch(data):
batch_size = len(data)
batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
for i in range(batch_size):
text, image = getImageAndName(data[i])
# image = convert2gray(image)
# batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0
batch_x[i, :] = image.flatten()
batch_y[i, :] = text2vec(text)
return batch_x, batch_y
####################################################################
# 定义CNN
def crack_captcha_cnn(X, keep_prob, w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
# print(x.get_shape())
# w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
# w_c2_alpha = np.sqrt(2.0/(3*3*32))
# w_c3_alpha = np.sqrt(2.0/(3*3*64))
# w_d1_alpha = np.sqrt(2.0/(8*32*64))
# out_alpha = np.sqrt(2.0/1024)
# 3 conv layer
w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)
# print(conv1.get_shape())
w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
# print(conv2.get_shape())
w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
# print(conv3.get_shape())
# Fully connected layer
w_d = tf.Variable(w_alpha * tf.random_normal([5*13*64, 1024]))
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
# out = tf.nn.softmax(out)
return out
traindata, testdata = getSplitData(PATH)
# 训练
def train_crack_captcha_cnn(max_step=200):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout
output = crack_captcha_cnn(X, keep_prob)
# loss
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output, Y))
# 最后一层用来分类的softmax和sigmoid有什么不同?
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = get_next_batch(sampleTrain(100,traindata))
_, lossSize = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
if step % 5 == 0:
print("step is:" + str(step), u"损失函数大小为" + str(lossSize))
batch_x_test, batch_y_test = get_next_batch(testdata)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print("step is:" + str(step), "acc is :" + str(acc))
if step == max_step:
saver.save(sess, "./model/crack_capcha.model")
break
step += 1
# batch_x_test, batch_y_test = get_next_batch(testdata)
# acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
# print("step is:"+str(step),"acc is :"+str( acc))
# # 如果准确率大于50%,保存模型,完成训练
def crack_captcha(captcha_image):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
# Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32)
output = crack_captcha_cnn(X, keep_prob)
saver = tf.train.Saver()
# saver = tf.train.import_meta_graph('crack_capcha.model.meta')
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('./model/'))
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
text = text_list[0].tolist()
return text
def predict(testdata):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
keep_prob = tf.placeholder(tf.float32)
output = crack_captcha_cnn(X, keep_prob)
saver = tf.train.Saver()
with tf.Session() as sess:
# sess.run(tf.global_variables_initializer())
saver.restore(sess, tf.train.latest_checkpoint('./model/'))
batch_size=len(testdata)
count = 0
for i in range(batch_size):
text, image = getImageAndName(testdata[i])
# image = convert2gray(image)
# captcha_image = image.flatten() / 255
captcha_image = image.flatten()
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
predict_text = text_list[0].tolist()
predict_value = vec2text(predict_text)
flag = text == predict_value
if flag:
count += 1
print("真实值: {}, 预测值: {}, 是否相等: {}".format(text, predict_value, flag))
print('\n识别结果: {}/{}={}'.format(count, batch_size,count/batch_size))
def predict_single(image_file):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
keep_prob = tf.placeholder(tf.float32)
output = crack_captcha_cnn(X, keep_prob)
saver = tf.train.Saver()
with tf.Session() as sess:
# sess.run(tf.global_variables_initializer())
saver.restore(sess, tf.train.latest_checkpoint('./model/'))
text, image = getImageAndName(image_file)
captcha_image = image.flatten()
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
predict_text = text_list[0].tolist()
predict_value = vec2text(predict_text)
print('\n识别结果: {}'.format(predict_value))
if __name__ == '__main__':
train_crack_captcha_cnn(max_step=5000)