前一段时间,做项目研究了一下卡尔曼滤波,并且在项目当中实现了一个物体跟踪的功能,所以,借着新鲜劲儿,本次博客对卡尔曼滤波进行一次整理。
卡尔曼滤波适用于估计一个动态系统的最优状态。即便是观测到的系统状态参数含有噪声,观测值不准确,卡尔曼滤波也能够完成对状态真实值的最优估计。网上大多数的教程讲到卡尔曼的数学公式推导,会让人很头疼,难以把握其中的主线和思想。所以我参考了国外一位学者的文章,讲述卡尔曼滤波的工作原理,然后编写了一个基于OpenCV的小程序给大家做一下说明。下面的这个视频请大家先直观地看看热闹吧~
角度跟踪视频
假设我们手头有一辆DIY的移动小车。这辆车的外形是这样的:
这辆车可以在荒野移动,为了便于对它进行控制,需要知道它的位置以及移动速度。所以,建立一个向量,用来存储小车的位置和速度
以之前我们创建的状态变量为例,
到此,利用 xk^ 和 Pk 能够对系统进行粗略的跟踪,但是还不完善。因为安装在系统上面的传感器会对系统的状态进行测量反馈,纠正估计。下面看看传感器的量测更新是怎么样对最终的估计产生影响的。下图说明的是状态空间向观测空间的映射。
在这里需要说明一下,卡尔曼滤波器的观测系统的维数小于等于动态系统的维数,即观测量可以少于动态系统中状态向量所包含的元素个数。
注意,传感器的输出值不一定就是我们创建的状态向量当中的元素,有时候需要进行一下简单的换算。即使是,有可能单位也不对应,所以,需要一个转换。这个转换就是矩阵 Hk ,在一些文献当中也被称作状态空间到观测空间的映射矩阵。
得到的公式如下:
μ→expected=Hk x^k
Σexpected=Hk Pk HTk
那么,传感器对系统某些状态的测量真的准确吗?是不是也会有偏差呢?答案是肯定的。系统在某一个状态下,传感器输出一组观测值,当系统在另一个状态下,传感器会输出另外的观测值。反过来想,就是说根据读取到的观测向量,可以推测系统的实际状态。由于的存在,不同的系统状态造成当前的观测值的概率是不同的。所以,还需要一个观测噪声向量以及观测噪声协方差来衡量测量水平,我们将它们分别命名为 v→k 和 Rk 。下面的两张图说明这一点。
z→t = Hk x^k + v→k
观测向量 zk→ 服从高斯分布,并且其平均值认为就是本次的量测值 (z1,z2) 。
下图看到的是两个云团,一个是状态预测值,另一个是观测值。那么到底哪一个具体的结果才是最好的呢?现在需要做的是对这两个结果进行合理的取舍,通过一种方法完成最终的卡尔曼预测。即:从图中粉红色云团和绿色云团当中找到一个最合适的点。
问题来了,怎么找?
首先来直观理解一下:考察观测向量 zk→ 和先验估计 x^k :存在两个事件:事件1传感器的输出是对系统状态真实值的完美测量,丝毫不差;事件2先验状态估计的结果就是系统状态真实值的完美预测,也是丝毫不差。但是大家读到这里心里非常清楚的一点是:两个事件的发生都是概率性的,不能完全相信其中的任何一个!!!!!!!
如果我们具有两个事件,如果都发生的话,从直觉或者是理性思维上讲,是不是认定两个事件发生就找到了那个最理想的估计值?好了,抽象一下,得到:两个事件同时发生的可能性越大,我们越相信它!要想考察它们同时发生的可能性,就是将两个事件单独发生的概率相乘。
那么,下一步就是对两个云团进行重叠,找到重叠最亮的点(实际上我们能够把云团看做一帧图像,这帧图像上面的每一个像素具有一个灰度值,灰度值大小代表的是该事件发生在这个点的概率密度),最亮的点,从直觉上面讲,就是以上两种预测准确的最大化可能性。也就是得到了最终的结果。非常神奇的事情是,对两个高斯分布进行乘法运算,得到新的概率分布规律仍然符合高斯分布,然后就取下图当中蓝色曲线峰值对应的横坐标不就是结果了嘛。证明如下:
我们考察单随机变量的高斯分布,期望为 μ ,方差为 σ2 ,概率密度函数为:
这部分重点讲解一下利用OpenCV如何实现一个对三维空间内物体的二维平面跟踪。
背景:跟踪一个移动速度大小和方向大致保持不变的物体,检测该物体的传感器是通过对物体拍摄连续帧图像,经过逐个像素的分析计算,得到x、y方向的速度,将两个速度构成一个二维的列向量作为观测向量。
下面看一下OpenCV当中对卡尔曼滤波的支持和提供的接口说明。
OpenCV2.4.13-KalmanFilter
下面是参与到卡尔曼滤波的一些数据结构,它们代表的意义在其后面用英文进行了描述。
OpenCV将以下的成员封装在了KalmanFilter当中,我们使用时候,可以直接实例化一个对象,例如:
KalmanFilter m_KF;
//CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
//CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
//CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
//CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
//CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
//CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
//CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
//CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
//CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
//CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
KalmanFilter类的成员函数具有如下几个:
KalmanFilter
init
predict
correct
方法很简单,但是需要知道如何使用:
程序当中,我单独写了一个类,在我的计算线程(就是获取到量测结果的线程)当中对该类进行实例化并且调用其中的方法。量测结果存放在
m_dispacementVector[0] = m_xSpeed;
m_dispacementVector[1] = m_ySpeed;
当中。
步骤一:
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
/** @brief Re-initializes Kalman filter. The previous content is destroyed.
@param dynamParams Dimensionality of the state.
@param measureParams Dimensionality of the measurement.
@param controlParams Dimensionality of the control vector.
@param type Type of the created matrices that should be CV_32F or CV_64F.
*/
在卡尔曼滤波类的构造函数成员列表当中首先告知OpenCV过程状态向量的维度和观测向量的维度:
m_KF(4,2,0)
对m_KF
成员的初始化:
我想对物体的位置信息和速度信息进行跟踪,由于是二维的,所以位置信息x、y方向两个变量,速度信息x、y方向两个变量,从而m_KF.statePre
和m_KF.statePost
是一个四维列向量。
在计算机屏幕上面,我自定义了一个该物体的运动空间,具有横纵坐标,后面会看到这个空间。由于相机的帧率是30fps,所以相邻帧时间间隔 δt≈30ms ,被测物体的实际速度大约为10mm/s,所以在如此短的时间内,该物体能够认为是做匀速直线运动,故得到状态转移方程
m_KF.transitionMatrix = (Mat_(4, 4) << 1, 0, 0.03, 0,0,1,0,0.03,0,0,1,0,0,0,0,1);
setIdentity(m_KF.processNoiseCov, Scalar::all(1e-5));//Q
认为过程激励噪声比较弱,并且每个分量相互之间不存在相关系。
setIdentity(m_KF.measurementMatrix);
初始化得到:
setIdentity(m_KF.errorCovPost, Scalar::all(1));
初始化为单位阵。
setIdentity(m_KF.measurementNoiseCov, Scalar::all(1e-1));//R
步骤二:
先验估计:
m_prediction = m_KF.predict();
步骤三:
后验估计:
首先需要告知卡尔曼滤波器最新的传感器数据:
m_dispacementVector[0] = m_xSpeed;
m_dispacementVector[1] = m_ySpeed;
m_pKalman->updateMeasurements(m_dispacementVector);
void kalmanFilter::updateMeasurements(double p[])
{
m_measurement = (Mat_<float>(2, 1) << p[0], p[1]);
}
接着完成后验估计:
m_KF.correct(m_measurement);
KalmanFilter.h:
#include
#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
class kalmanFilter:public QObject
{
Q_OBJECT
public:
kalmanFilter();
~kalmanFilter();
void initKalman();
void kalmanPredict();
void updateMeasurements(double p[]);
void kalmamCorrect();
double *returnResult();
void drawArrow(Point start, Point end, Scalar color, int alpha, int len);
private:
KalmanFilter m_KF;
Mat m_state;
Mat m_postCorrectionState;
Mat m_processNoise;
Mat m_measurement;
Mat m_img;
Mat m_prediction;
Point2f m_PointCenter;
};
KalmanFilter.cpp:
#include "kalmanFilter.h"
#include
#include
//CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
//CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
//CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
//CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
//CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
//CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
//CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
//CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
//CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
//CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
using namespace cv;
using namespace std;
kalmanFilter::kalmanFilter()
:m_KF(4,2,0)
, m_state(4,1,CV_32F)
, m_processNoise(4, 1, CV_32F)
, m_measurement(2,1,CV_32F)
, m_img(300, 300, CV_8UC3)
, m_PointCenter(m_img.cols*0.5f, m_img.rows)
{
m_KF.transitionMatrix = (Mat_<float>(4, 4) << 1, 0, 0.03, 0,0,1,0,0.03,0,0,1,0,0,0,0,1);//A
setIdentity(m_KF.measurementMatrix);
setIdentity(m_KF.processNoiseCov, Scalar::all(1e-5));//Q
setIdentity(m_KF.measurementNoiseCov, Scalar::all(1e-1));//R
setIdentity(m_KF.errorCovPost, Scalar::all(1));
}
kalmanFilter::~kalmanFilter()
{
}
void kalmanFilter::initKalman()
{
m_state = (Mat_<float>(4, 1) << 0,0,0,0);
m_KF.statePre = (Mat_<float>(4, 1) << m_PointCenter.x, m_PointCenter.y, 0, 0);
m_KF.statePost = (Mat_<float>(4, 1) << m_PointCenter.x, m_PointCenter.y, 0, 0);
m_KF.measurementMatrix = (Mat_<float>(2, 4) << 0,0, 1, 0,0,0,0,1);
}
void kalmanFilter::updateMeasurements(double p[])
{
m_measurement = (Mat_<float>(2, 1) << p[0], p[1]);
}
void kalmanFilter::kalmanPredict()
{
m_prediction = m_KF.predict();
}
void kalmanFilter::kalmamCorrect()
{
m_KF.correct(m_measurement);
m_postCorrectionState = m_KF.statePost;
//show the result
m_img = Scalar::all(0);
//measured result
drawArrow(Point(m_KF.statePost.at<float>(0, 0), m_KF.statePost.at<float>(1, 0)),
Point(m_KF.statePost.at<float>(0, 0) + m_measurement.at<float>(0, 0), m_KF.statePost.at<float>(1, 0) + m_measurement.at<float>(1, 0)),
Scalar(0, 0, 255), 20, 15);//B G R
putText(m_img, "measurement", Point(m_KF.statePost.at<float>(0, 0) + m_measurement.at<float>(0, 0), m_KF.statePost.at<float>(1, 0) + m_measurement.at<float>(1, 0)-5), FONT_HERSHEY_PLAIN, 1, Scalar(0, 0, 255), 2);
//predicted result
drawArrow(Point(m_KF.statePost.at<float>(0, 0), m_KF.statePost.at<float>(1, 0)),
Point(m_KF.statePost.at<float>(0, 0) + m_KF.statePost.at<float>(2, 0), m_KF.statePost.at<float>(1, 0) + m_KF.statePost.at<float>(3, 0)),
Scalar(0,255, 0), 20, 15);
putText(m_img, "Kalman", Point(m_KF.statePost.at<float>(0, 0) + m_KF.statePost.at<float>(2, 0)-10, m_KF.statePost.at<float>(1, 0) + m_KF.statePost.at<float>(3, 0)-5), FONT_HERSHEY_PLAIN, 1, Scalar(0, 255, 0), 2);
imshow("Kalman", m_img);
ofstream myfile("example.txt", ios::app);
myfile << "measure" << " "<float>(0, 0) << " " << m_measurement.at<float>(1, 0)<<" ";
myfile << "kalman" << " " << m_KF.statePost.at<float>(2, 0) << " " << m_KF.statePost.at<float>(3, 0) << endl;
}
double * kalmanFilter::returnResult()
{
double result[4];
for (int i = 0; i < 4; i++)
{
result[i] = m_postCorrectionState.at<double>(i, 1);
}
return result;
}
void kalmanFilter::drawArrow(Point start, Point end, Scalar color,int alpha,int len)
{
const double PI = 3.1415926;
Point arrow;
double angle = atan2((double)(start.y - end.y), (double)(start.x - end.x));
line(m_img, start, end, color,2);
arrow.x = end.x + len * cos(angle + PI * alpha / 180);
arrow.y = end.y + len * sin(angle + PI * alpha / 180);
line(m_img, end, arrow, color,1);
arrow.x = end.x + len * cos(angle - PI * alpha / 180);
arrow.y = end.y + len * sin(angle - PI * alpha / 180);
line(m_img, end, arrow, color,1);
}
下面是录制的程序运行效果图(抱歉物体未显示):
参考资料:
卡尔曼滤波器OpenCV自带例子
教程
卡尔曼滤波的直觉理解