个性化推荐系统设计(4.1)——案例分析

  在过去的十年中,神经网络已经取得了巨大的飞跃。如今,神经网络已经得以广泛应用,并逐渐取代传统的机器学习方法。 接下来,我要介绍一下YouTube如何使用深度学习方法来做个性化推荐。

  由于体量庞大、动态库和各种观察不到的外部因素,为YouTube用户提供推荐内容是一项非常具有挑战性的任务。

  YouTube的推荐系统算法由两个神经网络组成:一个用于候选生成,一个用于排序。如果你没时间仔细研究论文,可以看看我们下面给出的简短总结。

个性化推荐系统设计(4.1)——案例分析_第1张图片

  以用户的浏览历史为输入,候选生成网络可以显著减小可推荐的视频数量,从庞大的库中选出一组最相关的视频。这样生成的候选视频与用户的相关性最高,然后我们会对用户评分进行预测。

  这个网络的目标,只是通过协同过滤提供更广泛的个性化。

个性化推荐系统设计(4.1)——案例分析_第2张图片

  进行到这一步,我们得到一组规模更小但相关性更高的内容。我们的目标是仔细分析这些候选内容,以便做出最佳的选择。

  这个任务由排序网络完成。

  所谓排序就是根据视频描述数据和用户行为信息,使用设计好的目标函数为每个视频打分,得分最高的视频会呈献给用户。

个性化推荐系统设计(4.1)——案例分析_第3张图片

  通过这两步,我们可以从非常庞大的视频库中选择视频,并面向用户进行有针对性的推荐。这个方法还能让我们把其他来源的内容也容纳进来。

个性化推荐系统设计(4.1)——案例分析_第4张图片

  推荐任务是一个极端的多类分类问题。这个预测问题的实质,是基于用户(U)和语境©,在给定的时间t精确地从库(V)中上百万的视频类(i)中,对特定的视频观看(Wt)情况进行分类。

关注我的技术公众号《漫谈人工智能》,每天推送优质文章

个性化推荐系统设计(4.1)——案例分析_第5张图片

你可能感兴趣的:(机器学习,深度学习,个性化推荐系统)